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A detailed treatment of tide-generating forces is given, followed by a simplified dynamic theory 
of tidal waves. To clarify the underlying physics, we use a simple model of the ocean that consists 
of a water shell of uniform depth completely covering the globe. The treatment is appropriate for 
college and university undergraduate students studying introductory geophysics or astronomy, 
general physics, or intermediate mechanics. A computer simulation is developed to aid in under-
standing the properties of sun- or moon-induced tide-generating forces and of the stationary tidal 
waves created by these forces in the open ocean. 
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II..  IInnttrroodduuccttiioonn  
All textbooks in introductory astronomy and many in physics and intermediate mechanics men-

tion the existence of oceanic tides as an interesting manifestation of universal gravitation. Pedagogical 
papers devoted to the tides (see, for example, Refs. 1–9) testify to the fact that many teachers are inter-
ested in this topic, but are not satisfied with the clarity and correctness of the commonly accepted ex-
planations of the physics of tidal phenomena. A review of textbooks and related literature shows that 
the most important aspects of the origin and properties of tides are often treated inaccurately or even 
erroneously. Much of the confusion over generating tides is related to the roles of the orbital motion of 
the moon and earth about their common center of mass and of the earth’s axial rotation. In discussing 
the physics behind this phenomenon, authors usually explain (more or less successfully) why two tidal 
swells appear on the opposite sides of the globe. However, it is difficult to find a plausible explanation 
of the physical mechanism responsible for the phase shift between the zenith of the moon and the mo-
ment of high tide, which at some places approaches 90 degrees. Misunderstandings also occur in dis-
cussions about the role of tidal friction in the retardation of axial rotations and in the evolution of or-
bital motions of the gravitationally coupled celestial bodies.  

To clarify the basic physics underlying the tidal phenomena, we suggest a rather simple but rig-
orous treatment of the tide-generating forces, followed by a theory of the circulating tidal wave pro-
duced by these forces. This treatment uses a simplified model of the ocean consisting of a water shell 
of uniform depth entirely covering the globe. A computer simulation is developed to support the ana-
lytical treatment.10 The simulation gives a dynamical picture of the forces and the tidal wave driven by 
these forces in the open ocean. This paper and the simulation are intended only to clarify the physical 
background of this natural phenomenon and do not assume to describe the complete picture. The purely 
theoretical quantitative description of tides for a given location on the earth, derived solely from first 
principles, is hardly possible because of the extremely complex structure of the oceans, the actual sys-
tem that responds with tides and tidal currents to the well known tide-generating forces.  

The paper is organized as follows. First we discuss qualitatively the physical nature of the sun- 
and moon-induced tide-generating forces in a non-rotating geocentric frame of reference, deriving the 
mathematical expressions for these forces at an arbitrary point on the earth. Next the static (equilib-
rium) distortion of the ocean surface under these forces is determined. Then we show that the same 
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expressions for the tidal forces are applicable on the rotating earth, and we discuss how these forces 
depend on time. We show that a uniform rotation of the system of tidal forces coupled with the appar-
ent motion of the sun (moon) can be represented as a superposition of two oscillating quadrupole sys-
tems of forces whose axes make an angle of 45° with respect to one another. Each of these systems of 
forces generates a steady-state forced oscillation of the ocean (a standing wave). Next we treat the tidal 
wave circulating around the globe as a superposition of these standing waves. Finally the real-world 
complications of this simplified picture are discussed briefly, as well as the role of tidal friction in the 
evolution of the axial rotations and orbital revolutions of celestial bodies. 

 

IIII..  TThhee  ttiiddee--ggeenneerraattiinngg  ffoorrcceess::  AAnn  eelleemmeennttaarryy  aapppprrooaacchh  
The tides are manifested by alternating vertical displacements of the surface of the sea coupled 

with horizontal movements of the water that are called the tidal currents. It is well known that the tides 
are caused by the varying gravitational forces that the moon and sun exert on both the earth and its 
oceans. More exactly, the origin of tidal phenomena is related to the inhomogeneity (non-uniformity) 
of the lunar and solar gravitational fields across the globe. 

The gravitational force the moon exerts on any body on the surface of the earth is much smaller 
than the gravitational force of the sun. However, because the moon is much closer to the earth than the 
sun, the inhomogeneity of the lunar gravitational field across the earth is considerably greater than that 
of the solar field. As a result, moon-induced tides are more than twice as great as sun-induced tides. 
Nevertheless, to arrive more easily at an understanding of the physical origin of tide-generating forces, 
we begin our analysis with sun-induced tides. These are somewhat simpler to explain because the cen-
ter of mass of the sun-earth system very nearly coincides with the center of the sun. 

We next divide the problem into two parts: First we discuss the origin and properties of tide-
generating forces, after which we investigate qualitatively the much more complicated case of the dy-
namical effect that these time-varying forces have on the ocean. We note that much of the confusion in 
the literature is related to the first (rather simple) part of this problem, which can be completely and 
unambiguously solved using Newtonian mechanics. 

The earth as a whole moves with an acceleration relative to an inertial reference frame. This ac-
celeration is produced by the gravitational attraction of the earth to the sun (and also to the moon and to 
all other celestial bodies). Although the earth travels in an almost circular orbit, its centripetal accelera-
tion a0 in this orbital motion is generated by the gravitational pull of the sun and hence is just the accel-
eration of free fall, which is independent of the orbital velocity. The earth would move with the same 
acceleration were it freely falling in the gravitational field of the sun. What is important in this problem 
is the acceleration, not the orbital velocity, of the earth. 

To better understand the tides, we first use a non-rotating geocentric reference frame. Although 
the origin of this frame moves approximately in a circle around the sun (more exactly, around the cen-
ter of mass of the sun-earth system), the frame itself does not rotate because the directions of its axes 
are fixed relative to the distant stars. That is, the motion of this frame – revolution without rotation – is 
a translational (though nearly circular) motion. It reminds us of “the circular motion of the frying pan” 
in the hands of a cook (see Ref. 1). With respect to inertial space, all points of this reference frame 
move with an acceleration a0 whose magnitude and direction are the same for all the points. Any body 
of mass m whose motion is referred to this non-inertial geocentric frame (for example, an earth satel-
lite, or a drop of water in the ocean) is subject to the pseudo force of inertia, Fin = −ma0, which is inde-
pendent of the position of the body relative to the earth. If the body were placed at the center of the 
earth, this pseudo force would exactly balance the gravitational attraction of the body to the sun. In 
other words, if we consider the earth as a giant spaceship orbiting the sun, a body placed at the center 
of this ship would seem to be weightless with respect to the gravitation of the sun, just as astronauts on 
an orbital station seem to be weightless in the gravitational field of the earth. 

The force of inertia, Fin = −ma0, experienced by a body in the freely falling geocentric frame of 
reference (or in the frame that revolves without axial rotation about the sun-earth center of mass), has 
the same magnitude and direction everywhere on the earth. On the other hand, the gravitational pull of 
the sun, Fsun, experienced by the body diminishes with its distance from the sun and is directed to the 
sun, and hence both the magnitude and direction of Fsun depend on the position of the body on the 
earth. Because the earth is an extended body, the pseudo force Fin and the force Fsun are generally un-
equal and not exactly opposite, except at the center of the earth. The combined actions of the gravita-
tional pull of the sun and the pseudo force of inertia is the tidal force.  

In other words, the tidal force at a given position near the earth equals the vector difference of 
the gravitational pull the sun exerts on an object at this position and the gravitational pull the sun would 
exert on this object were it at the center of the earth. We may avoid using a non-inertial reference frame 
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if we are not inclined to introduce the concept of the pseudo force of inertia to students. In doing so, we 
can use a somewhat different language in the subsequent derivation of the tidal force: Instead 
of discussing the vector addition of the pull of the sun and the corresponding pseudo force of inertia 
arising from the non-inertial character of the reference frame, we can use instead an inertial frame, in 
which the tidal force can be found by the vector subtraction of the gravitational force of the sun on the 
body at its given location with the force of the sun on the body were it located at the center of the earth. 
Indeed, when viewing the situation on the earth from the inertial frame of reference, we can apply the 
Galilean law according to which, in the same gravitational field (here the field of the sun), all free bod-
ies experience equal accelerations. Hence the earth as a whole and all free bodies on the earth, being 
subjected to almost the same solar gravitational field, are very nearly accelerated toward the sun. Con-
sequently we do not particularly notice the influence of solar gravitation on what happens on earth. The 
small differences between the acceleration of the earth as a whole and of the earthly bodies depend on 
the distances of the bodies from the center of the earth because these differences are caused by the non-
uniformity of the solar gravitational field over the extent of the earth.11 

These differential effects of gravity give rise, in particular, to solar gravitational perturbations 
of an earth satellite’s geocentric orbit. The tide-generating forces slightly distort the earth's gravita-
tional pull that governs the satellite’s motion so that after a revolution, the satellite does not return to 
the same point of the geocentric reference frame. On the surface of the earth, these same forces give 
rise to the tides. We emphasize that tidal forces are caused not by the sun’s gravitational field itself, but 
rather by the non-uniformity of this field. 

 
Figure 1.  Sun-induced tide-generating forces at different points A, B, Z, and N. 

Figure 1 illustrates the origin and properties of the tide-generating forces produced by the sun. 
The free-fall acceleration of the earth E in the gravitational field of the sun S is a0 = GMsun/R2, where 
Msun is the mass of the sun, and R is the sun-earth distance. The gravitational pull of the sun Fsun ex-
perienced by the body (for example, a satellite) at point A almost equals the force of inertia Fin in mag-
nitude because the distances to the sun from the body and from the center of the earth are very nearly 
equal. However, at point A the direction of the gravitational force Fsun is not exactly opposite to the 
force of inertia Fin. Thus their non-zero resultant, the tidal force FA at point A, is directed toward the 
earth. Its magnitude equals ma0β = ma0(r/R) = (GmMsun/R2)(r/R), where β = r/R is the angle between 
the body and the center of the earth as seen from the sun. The tidal force FB at the opposite point B 
equals FA in magnitude and is also directed vertically downward to the earth. On the surface of the 
earth, the tidal force is directed vertically downward at all places (forming a circle) where the sun is in 
the horizon at that moment.  

The distance from the sun to the body at point Z (for which the sun is at the zenith) is smaller 
than to the center of the earth. Here the gravitational pull of the sun points exactly opposite to and is 
somewhat greater than the force of inertia. Hence, the tidal force FZ at this point is directed vertically 
upward, from the earth toward the sun. Its magnitude,  
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is approximately twice the magnitude of the tidal forces at points A and B. Similarly, at the opposite 
point N (for which the sun is at its nadir) the force of inertia is greater than the gravitational pull of the 
sun, and so the tidal force FN at point N is also directed vertically upward from the earth (and from the 
sun). In magnitude, FN approximately equals FZ.  

The expressions for the tidal forces, FA = (GmMsun/R2)(r/R) and FZ given by Eq. (1), are valid 
also for the tidal forces produced on the earth by the moon if we replace Msun by the mass of the moon 
and R by the moon-earth distance. There is no intrinsic difference between the sun-induced and moon-
induced tide-generating forces. In both cases, the only important factor is the acceleration of the earth 
under the gravitational pull of the celestial body that causes the tides on the earth, not the orbital veloci-
ties of both gravitationally coupled bodies (the earth and the sun, or the earth and the moon).  

The tidal force experienced by any object is proportional to its distance r from the center of the 
earth and inversely proportional to the cube of the distance R to the celestial body that causes the force, 
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and is proportional to the mass of the source body. As noted, lunar tide-generating forces on the earth 
are more than twice those of the sun (their ratio is approximately 2.2) because the moon is much closer 
to the earth.  

 

IIIIII..  TTiiddaall  ffoorrcceess  aatt  aann  aarrbbiittrraarryy  ppooiinntt  nneeaarr  tthhee  eeaarrtthh  
The standard derivation of tidal forces uses the tide-generating potential (see, for example, 

Refs. 12 and 13) for which the mathematics is somewhat simpler. However, to emphasize the physics 
underlying the origin of tide-generating forces, we consider the vector addition of the relevant forces, 
just as in the elementary treatment of Sec. II. To obtain a general mathematical expression for the tide-
generating force at an arbitrary point D over the earth (Fig. 2), we introduce the radius vector r of this 
point measured from the center of the earth, and also the vector rs = R + r measured from the center of 
the sun, S, where R is the vector of the center of the earth from the center of the sun. 

 
Figure 2. For calculation of the tide-generating force at arbitrary point D. 

The tidal force Ftid experienced by a body of mass m at point D in the non-inertial, non-rotating 
geocentric frame is the vector sum of its gravitational attraction to the sun, Fsun = −GmMsunrs/rs

3, and 
the force of inertia, Fin = −ma0 = GmMsunR/R3: 
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We express rs in Eq. (2) as the vector sum R + r and calculate the square of rs. We take into account 
that r << R and write 
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To find an approximate expression for 1/rs
3 in Eq. (2), we raise the right-hand part of Eq. (3) to the 

power (−3/2). If we substitute the resulting value of 1/rs
3 into Eq. (2) for Ftid, we obtain: 
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We note that the main contributions of Fsun and Fin to Ftid, whose magnitudes are inversely pro-
portional to R2, cancel in Eq. (4). This cancellation corresponds to the aforementioned state of weight-
lessness that we experience on the spaceship Earth with respect to the sun’s gravity. For points A and B 
in Fig. 1, r is perpendicular to R, and hence the scalar product (R · r) is zero. Therefore at these points 
the tidal force is directed opposite to r (that is, vertically downward), and its magnitude equals 
GmMsun(r/R3). For points Z and N, the tidal force is directed along r (that is, vertically upward), and its 
magnitude 2GmMsun(r/R3) is two times greater than at points A and B. We see that at these four points, 
the general result given by Eq. (4) agrees with the simpler calculations of Sec. II. 

 

IIVV..  HHoorriizzoonnttaall  aanndd  vveerrttiiccaall  ccoommppoonneennttss  ooff  tthhee  ttiiddaall  ffoorrccee  
The sun-induced tide-generating forces exerted on the earth have a quadrupole character: They 

stretch the earth along the sun-earth line, and squeeze the earth in the directions perpendicular to that 
line. Because of the axial symmetry with respect to the sun-earth line, the vertical and horizontal com-
ponents of the tidal force depend only on the angle θ shown in Fig. 2 (and on the distance r from the 
center of the earth). The angle θ determines the position of the mass point m on or near the surface of 
the earth measured from this line. 
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Figure 3.  Directions of the tidal forces at different equatorial points near the earth. 

Figure 3 shows how the tidal forces are directed at different points near the earth. Because of 
axial symmetry about the sun-earth line, Fig. 3 applies to any plane passing through the sun-earth line. 

The horizontal (tangential to the surface) components of the tidal forces are much more influen-
tial on the ocean tides and on the orbits of earth satellites than are the vertical (radial) components, 
which only modify slightly the earth’s gravitational force. For the horizontal component of the tidal 
force at an arbitrary point D, whose geocentric position is determined by the two coordinates r and 
θ  (in the plane shown in Fig. 2), Eq. (4) yields: 
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where Fsun = GmMsun/R2 is the gravitational pull of the sun on the body. The horizontal component of 
the tidal force is zero at points A and B and at all other points of the plane orthogonal to the line sun-
earth (for which θ = 90°), as well as at points N and Z (for which θ = 0 and θ = 180°). The horizontal 
component of the tidal force has its maximum value (3/2)(r/R)Fsun = (3/2)(r/R)GmMsun/R2 at all points 
on the earth for which θ = 45° and θ = 135°. This maximal horizontal component of the solar tide-
generating force causes a deviation of the plumb line from the direction of the earth’s own gravity only 
by 0.008′′ .  

If we take the scalar product of the right-side of Eq. (4) for Ftid with the unit vector r/r, we ob-
tain the dependence of the vertical component (Ftid)vert of the tidal force on the angle θ between R and 
r:  
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The last term on the right-hand expression of Eq. (6) is independent of θ  and is thus independ-
ent of time on the spinning earth. It can therefore be dropped as far as the tides are concerned. This 
term in the vertical component of the tidal force is the same everywhere on the earth (for a given value 
of r) and adds only a tiny constant value to the vertical force of the earth’s gravity (about ten million 
times smaller than mg). Thus, the vertical and horizontal components of the tidal force exerted on a 
body of mass m located at a position determined by angle θ and radius r are given by:  
 

Fvert  =  (3/2)(r/R)Fsun cos2θ,     Fhor  = −(3/2)(r/R)Fsun sin2θ, (7) 
 

where Fsun is the total gravitational pull of the sun experienced by the body anywhere on the earth. This 
representation of the tide-generating force is especially convenient because Eq. (7) defines a tidal force 
vector whose magnitude (3/2)(r/R)Fsun = (3/2)GmMsunr/R3 is independent of the angle θ : The tidal 
forces at all points that lie at a given distance r from the earth’s center are equal in magnitude and differ 
only in direction. 

Equations (5)–(7) also are valid for the tidal forces produced by the moon, provided we replace 
the mass of the sun Msun by the mass of the moon Mmoon and the sun-earth distance R by the moon-earth 
distance. In this case the angle θ in Eq. (7) determines the position of the body relative to the moon-
earth line. 

The tide-generating force of the moon, Ftidal = (3/2)GmMmoonr0/R3, experienced by a body of 
mass m on the surface of the earth (r0 is the earth’s radius) is very small compared to its weight – the 
earth’s force of gravity Fgrav = mg = GmMearth/r0

2. If we let the ratio Mmoon/Mearth = 1/81 and the mean 
earth-moon distance R = 60r0 (actually this distance varies between 57r0 and 63.7r0 because of the el-
liptical shape of the moon’s orbit), we obtain: 
 

Ftidal/Fgrav = (3/2)(Mmoon/Mearth )(r0/R)3
 ≈ 8.6⋅10-8. (8) 

 

Although the maximal lunar tidal force on the surface of the earth is only about 10−7 of the 
earth’s gravitational force, its effect on the ocean water can be considerable because of its horizontal 
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component, which is orthogonal to the earth’s gravitational field and varies with time periodically be-
cause of the earth’s axial rotation. The horizontal component shifts the ocean water around the globe. 

 

VV..  TThhee  ssttaattiicc  ddiissttoorrttiioonn  ooff  tthhee  wwaatteerr  ssuurrffaaccee  
To estimate the static (equilibrium) distortion of the ocean’s surface due to the tidal forces, we 

can use the hypothetical situation of a non-rotating planet on which the tide-generating forces are 
nearly time-independent. From the symmetry of tidal forces, Eq. (7), we can assume that the distorted 
surface has an ellipsoidal shape given by the expression  

r(θ) =  r0 + a cos 2θ, (9) 
where 2a << r0 is the difference in the static maximal and minimal levels at points Z and A (see Fig. 3). 
Hence we can write for the small inclination α of the water surface with respect to the horizon: 
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We see that the water surface is horizontal (α = 0) at θ = 0 and θ = 90° (points Z and A). The angle α is 
maximum and equals 2a/r0 at θ = 45° and at θ = 135°, where the tidal force is directed horizontally. In 
equilibrium the distorted water surface is orthogonal to the plumb line. The plumb line shows the direc-
tion of the vector sum of the earth's gravity and the tidal force. A small departure of the plumb line 
from the direction of the earth's gravity is caused by the horizontal component of the tidal force. There-
fore, the angle α equals the ratio of the horizontal tidal force Fhor to the force of the earth’s gravity Fgrav 

= mg. If we equate α = 2a/r0 at θ = 45° to Fhor/Fgrav and take into account that for sun-induced tides, 
Fhor/mg = (3/2)(Msun/Mearth)(r0

3/R3), we find for the maximal static level difference 2a at points Z and A: 
 

2a = (3/2) r0 (Msun/Mearth)(r0
3/R3).  (11) 

 

Equation (11) yields 2a = 0.24 m. A similar expression is valid for the static distortion of the ocean 
surface due to the lunar tidal force, and yields 2a = 0.54 m for the moon-induced static distortion. In 
Sec. VII the equation for this static distortion is also derived from the tide-generating potential. 
 

VVII..  TTiiddaall  ffoorrcceess  oonn  tthhee  rroottaattiinngg  eeaarrtthh  
In the above we have used a revolving but non-rotating geocentric reference frame. The origin 

of this frame moves in a circle around the sun-earth (moon-earth) center of mass, but the frame itself 
does not rotate because the directions of its axes are fixed relative to the distant stars. That is, the frame 
moves translationally in a circle. This reference frame is convenient for the analysis of a motion of an 
artificial satellite. If we ignore the perturbations caused by tidal forces, the earth satellite traces out a 
closed elliptical orbit relative to this reference frame.  

To introduce tidal forces on the rotating earth, we must use a true geocentric frame of reference 
that takes part in the daily rotation of the earth. This frame is non-inertial, and hence we should be con-
cerned with the acceleration of its different points. We can consider the motion of the earth (and of the 
geocentric reference frame) as consisting of two components. The first is the component considered 
above, namely translational motion (revolution without rotation) about the sun-earth (moon-earth) cen-
ter of mass. The second component is a uniform daily rotation (spin) of the earth about an axis passing 
through the center of the earth. 

Both these motions of the earth are important in the problem of tides, but the roles they play are 
quite different. The acceleration a0 related to the translational motion is responsible for the origin of the 
uniform pseudo force of inertia Fin = −ma0, whose action on a body on the earth, combined with the 
non-uniform gravitational pull of the sun (moon), is described by the tidal force Ftid considered previ-
ously. We note again that only the acceleration a0 of this translational motion is important, not the or-
bital velocity of the earth.14 To avoid confusion often encountered in the literature (see, for example, 
Ref. 15), we must be careful with definitions. In discussing tides, we should be concerned only with 
those gravitational and inertial forces that depend on the apparent position of the celestial body that 
produces the tide. The axial rotation of the earth is related to the centripetal acceleration and gives rise 
to centrifugal forces that increase in proportion to the distance from the earth’s axis. The centrifugal 
force of the earth’s daily rotation generally is much greater in magnitude than tidal forces. Because of 
the centrifugal forces, the equilibrium shape of the earth differs slightly from an ideal sphere – it is ap-
proximately an ellipsoid of rotation whose equatorial diameter is a bit greater than the polar diameter 
(see, for example, Ref. 13). The centrifugal effect of the earth’s daily rotation causes an equatorial 
bulge, which is the principal departure of the earth from its spherical shape.16 
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But we are not concerned here with this constant distortion of the earth because this distortion 
is independent of the apparent position of the celestial body that produces the tides. Therefore, the cen-
tripetal acceleration of the axial rotation adds nothing to tidal forces. However, the daily rotation of the 
earth makes tidal forces time-dependent because the pattern of tidal forces on the earth is coupled to the 
apparent positions of the sun and moon. A dynamical response of the oceanic waters on the spinning 
earth to these time-dependent forces is the essence of the phenomenon of tides. 

Thus, in the problem of tides, expressions for the tide-generating forces Fhor and Fvert in Eq. (7) 
are applicable also to the true geocentric frame of reference, which takes part in the daily axial rotation 
of the earth. The system of tidal forces shown in Fig. 3, being coupled to the apparent position of the 
sun (moon), rotates rigidly together with the earth-sun (earth-moon) line. For simplicity, we shall con-
sider the case in which the source celestial body (the sun or moon) occurs in the equatorial plane of the 
earth. Although the system of tidal forces rotates as a whole with the angular velocity Ω  of the earth’s 
axial rotation, that is, with a period of 2π/Ω, the true period of variation of the tidal forces on the earth 
equals half this value (T = π/Ω) because of the quadrupole symmetry of the system of forces (the semi-
diurnal tide). For the sun-induced tidal forces the period equals 12 hours. For the moon-induced tidal 
forces the period is 12 hours 25 minutes – the difference between the periods is due to the orbital mo-
tion of the moon. If we fix a point on the equator of the earth, the local tidal force vector executes a 
uniform rotation in the vertical plane, making two complete revolutions during a day. The simulation 
clearly shows how the daily rotation of the whole system of tidal forces produces this doubly-fast uni-
form rotation of the tidal force at a given equatorial point, as seen by an observer on the spinning 
earth.10 Because of this periodic dependence on time, the tidal forces, in spite of their small magnitude 
compared even to the centrifugal force of inertia, produce the oceanic tides. 

To find analytical expressions for the time dependence of the tidal forces at a given point in the 
equatorial plane of the spinning earth, we substitute θ  = Ω t in Eq. (7). This substitution yields the fol-
lowing expressions for the point of the equator at which the sun culminates (passes through its zenith) 
at t = 0: 

Fvert (t) = Ar cos 2Ω t,    
 Fhor (t) = −Ar sin 2Ω t, 

(12) 
 

where A = (3/2)Fsun/R = (3/2)GmMsun/R3. At any other equatorial point of the earth, the tidal force vec-
tor also rotates in the vertical plane with angular velocity 2Ω. That is, all the vectors at different points 
rotate synchronously but with different phases. 

VVIIII..  TThhee  ppootteennttiiaall  ffuunnccttiioonn  ffoorr  ttiiddaall  ffoorrcceess  
An approach often used in deriving an expression for the tidal force is to begin with 

the potential energy of a body under the influence of tide-generating forces. This approach is simpler 
than that presented above. However, we have chosen the above approach because it does not obscure 
the underlying physics and consequently may be considered advantageous to physics instructors. Nev-
ertheless, for completeness, we introduce here the potential function, Utides(r,θ), and show how it can be 
used in calculating the equilibrium shape of the surface of the ocean and the static distortion of the wa-
ter under tidal forces. 

The components of the force that lie in the equatorial plane are given in Eq. (7) and are the 
negative gradients of the potential function Utides(r,θ): 

 

Fvert  =   Ar cos 2θ  = −∂Utides(r,θ)/∂r, 
Fhor = −Ar sin 2θ = −(1/r)∂Utides(r,θ)/∂θ. 

(13) 
 

Therefore, the potential function for the tidal forces can be written as:  
 

Utides(r,θ) = −(1/2)Ar2 cos 2θ =  −(3/4)(GmMsun/R3)r2 cos 2θ. (14) 
 

The restoring forces that limit the tidal distortion of the water’s surface are due to the earth’s 
gravity. If the earth were not rotating relative to the earth-sun line, the static distortion of the water sur-
face covering the globe would be the surface of equal total potential:  
 

U(r,θ) = U0(r)  + Utides(r,θ) = const, (15) 
 

where U0(r) = mgr is the spherically symmetric potential function of the earth’s gravity which yields 
the radial component of the earth’s gravitational force −dU0(r)/dr = −mg. Thus, 
 

U(r,θ) = mgr − (1/2)Ar2cos 2θ. (16) 
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In particular, at points Z and A (see Fig. 3) of the water surface, the values of the total potential 
function, Eq. (16), are equal: U(rZ, π) = U(rA,π/2), from whence we obtain 

 

mgrZ − (1/2)ArZ
2  = mgrA + (1/2)ArA

2,     
mg(rZ − rA)  =  (1/2)A(rA

2
 + rZ

2). 
(17) 

 

We can use this condition to determine the static equilibrium distortion under the tidal forces of the 
otherwise spherical ocean surface. Let the radii of the distorted water surface at points Z and A be rZ = 
r0 + a and rA = r0 − a respectively, where r0 is the radius of the undistorted surface. Then 2a is the static 
level difference at points Z and A in which the level is maximum and minimum, respectively. Thus, 
from Eq. (17) we have 2mga = (1/2)A(rZ

2 + rA
2) ≈ Ar0

2, and for 2a we obtain: 
 

2a = Ar0
2/(2mg) = (3/2) r0 (Fsun/mg)(r0/R). (18) 

 

We note that Fsun/mg = (Msun/Mearth)(r0
2/R2), so that the static distortion of the ocean surface under the 

sun-induced tidal forces can also be expressed as: 
 

2a = (3/2) r0 (Msun/Mearth)(r0
3/R3). (19) 

 

This expression is the same as Eq. (11) derived by requiring that in equilibrium the surface of the ocean 
be orthogonal to the vector sum of the earth’s gravitational force and the tidal force. 

VVIIIIII..  TThhee  nnaattuurraall  wwaavvee  aanndd  tthhee  ddrriivviinngg  ttiiddaall  ffoorrcceess  
Most authors oversimplify the problem of tides and consider (after Newton and Bernoulli) only 

the so-called static (or equilibrium) theory of tides, which treats the ocean surface as a liquid ellipsoid 
stretched along the earth-moon (earth-sun) line, as if this surface were always in equilibrium under the 
earth’s force of gravity and tidal forces produced by the moon (sun). In this approach, the tidal bulges 
are aligned with the earth-moon (or earth-sun) axis. Therefore on the spinning earth the moments of 
high water at a given location should coincide with the upper and lower culminations of the moon 
(sun), that is, when the moon (sun) passes through its zenith and nadir. Observations do not agree with 
this prediction. Instead, almost the opposite is usually observed: the moments of low tide occur ap-
proximately at the culminations of the moon.  

A complete theory of the tides should take into account the dynamical response of the ocean to 
the time-dependent generating forces. The dynamical theory of tides (first suggested by Laplace and 
developed by Airy) treats the tides as a steady-state forced motion (under varying tidal forces) of a dy-
namical system (the ocean).17 Such a theory predicts a resonant growth of the steady-state amplitude in 
cases when the driving period approaches the period of natural oscillations.  

To avoid the complications related to the three-dimensional character of the problem and to ex-
plain the physical aspect of the dynamical theory using the simplest possible model, we imagine, fol-
lowing Airy, water in a wide canal of uniform depth engirdling the entire earth along the equator. 
Imagine the water surface in this canal being distorted statically under the tide-generating forces so that 
two bulges form on opposites sides of the earth, changing the shape of the surface from circular to el-
liptical. If the forces maintaining this shape suddenly vanish, the earth’s gravity would make the dis-
torted surface restore its equilibrium, circular shape. The water would start to flow and the bulges dis-
appear so that after a time, namely a quarter period, the water surface would become circular. But be-
cause the water continues to move, after another quarter period the bulges reappear in new positions 
showing an elliptical distortion of the surface along the line perpendicular to the line of the original 
distortion. Then the motion repeats itself in reverse. This motion of water in the circular canal is a 
gravitational standing surface wave whose wavelength equals half-circumference of the globe. Such a 
mode of oscillation is characterized by a certain natural period. 

The superposition of two such standing waves whose phases differ by π/2 and whose elliptical 
axes are separated by 45° produces a circulating (traveling) wave of constant elliptical shape and a 
wavelength equal to half of the earth’s circumference. The two opposite bulges in the water surface 
travel with this wave around the globe preserving their height and shape.10 

An essential point in explaining the steady-state phase shift between the moments of high tide 
and the culmination of the moon (sun) is the relation between the natural period T0 of this circulating 
wave and the period T of the tide-generating driving forces. It is possible to estimate T0 as the time 
taken by the circulating surface wave to travel along half the globe. In the limiting case of very long 
waves on the surface of shallow water (λ >> h) the speed of wave is determined by the earth’s gravity g 
and depth h, and is independent of λ. From hydrodynamics we know that this speed equals (gh)1/2 (see, 
for example, Ref. 18, p. 405). We assume that the mean value h of the ocean depth is 3.5 km. During a 
period T0, the wave travels half the circumference of the globe πr0, and hence T0 = πr0/(gh)1/2 ≈ 
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30 hours. Thus, the approximately 12-hour driving external period T is less than the natural period T0 of 
the free oscillation.  

We emphasize that it is the shape of the surface (the wave) that circulates around the globe, not 
the water itself. Relative to the earth, points on the surface of the ocean execute oscillatory motions in 
closed paths that are considerably stretched horizontally. On the average, the water is stationary in the 
geocentric frame. 

To obtain the dynamical picture of tides on the rotating earth, we should use the reference 
frame that rotates with the earth. Relative to this frame, the quadrupole system of tide-generating 
forces, being coupled to the position of the sun (moon), rotates as a whole while the sun (moon) trav-
els along its apparent daily path around the earth. This rotation of the forces occurs at an angular veloc-
ity Ω, the angular velocity of the earth’s daily rotation (or the difference between Ω  and the angular 
velocity of the moon in its orbit for moon-induced tides). Such a uniform rigid rotation of the system of 
mutually fixed vectors can be represented as a superposition of two oscillating quadrupole systems of 
forces (with a frequency ω = 2Ω) that do not rotate and whose axes make an angle of 45° to one an-
other. At each point one of these forces oscillates along the radial (vertical) direction, while the other 
force – along the tangential (horizontal) direction. The oscillations of these orthogonal components 
occur a quarter period out of phase. At any given point in the equatorial plane, the vector sum of these 
mutually orthogonal oscillating forces produces a force of constant magnitude whose direction rotates 
uniformly following the apparent motion of the sun (moon), but with angular velocity ω = 2Ω .10

 For 
different points on the earth, the phases of these rotating vectors differ. 

 

IIXX..  TThhee  ttiiddeess  aass  ffoorrcceedd  oosscciillllaattiioonnss  ooff  tthhee  oocceeaann  
What is really of interest is the steady-state forced oscillation of the ocean surface due to the 

time-dependent tidal forces. Each of the two oscillating systems of forces described above excites a 
mode of forced oscillation of the water in the equatorial canal, specifically the mode of the same sym-
metry as is characteristic of the corresponding system of driving forces. These modes have elliptical 
shapes, much like the natural oscillations considered above, namely, the elliptical standing waves 
whose axes make an angle of 45° with one another. Nevertheless, we can consider these modes to be 
orthogonal in the sense that their spatial forms are described by eigenfunctions forming an orthogonal 
basis in the function space. The two forced oscillations in this linear system, each excited by one sys-
tem of oscillating driving tidal forces, are independent of one another, and the resulting forced motion 
is a superposition of these forced oscillations. 

Any steady-state forced oscillation occurs exactly with the period of the driving force. The am-
plitude and phase lag of the oscillation depend on the amplitude of the driving force, on the damping 
factor, and, more importantly, on the relation between the driving and natural periods. The two systems 
of oscillating driving tidal forces are characterized by equal amplitudes and frequencies. Also the natu-
ral frequencies and damping factors of both excited modes are equal. Hence both excited modes also 
have equal amplitudes and equal phase delays behind the corresponding driving forces. The superposi-
tion of these modes produces a forced circulating (traveling) elliptical wave that has the same phase 
relation with the rotating driving forces as is characteristic of forced oscillations in general. 

If we ignore friction (dissipation of mechanical energy in the excited wave motion), the forced 
motion occurs exactly in phase with the driving force, provided the driving period is longer than the 
natural period. Otherwise the forced motion occurs in the opposite phase with respect to the driving 
force. For the simplified model of tides in the equatorial canal of uniform depth (and also for an earth 
covered everywhere by an ocean of uniform depth), the natural period of free oscillation is longer than 
the 12-hour driving period. Thus the dynamical theory predicts in this case a stationary circulating el-
liptically shaped wave whose axis (the line of tidal bulges) is perpendicular to the earth-sun (earth-
moon) line.  

On the other hand, the natural period of an elastic wave in the crust of the earth is shorter than 
the 12-hour period of the tidal forces. Hence, in the frictionless model, bulges in the earth’s crust are 
oriented along the earth-sun (earth-moon) line. Observations show that the solid body of the earth actu-
ally experiences twice-daily tides with maximum amplitude of about 30 cm whose bulges lag approxi-
mately 3° behind the earth-moon line.17 

 

XX..  MMaatthheemmaattiiccaall  ddeessccrriippttiioonn  ooff  tthhee  ffoorrcceedd  oosscciillllaattiioonnss  
Each of the partial forced oscillations can be described by a differential equation of a linear os-

cillator. Let q1(t) be the normal coordinate describing the first forced oscillation whose elliptical shape 
is characterized by a major axis oriented along the earth-sun line (and in the perpendicular direction 
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after a half period), and let q2(t) be the normal coordinate describing the second oscillation with the 
axis inclined 45° to the earth-sun line. A disturbance of the water surface caused by the first oscillation 
can be described by ∆r1(θ, t) = q1(t) cos(2θ), which gives the small vertical displacement of the surface 
at an arbitrary point (r0, θ) of the equator. Similarly, the second oscillation causes a distortion of the 
surface described by ∆r2(θ, t) = q2(t) sin(2θ). The forced oscillations experienced by the normal coordi-
nates q1(t) and q2(t) are periodic (steady-state) partial solutions of the two differential equations: 
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Here ω0 is the natural frequency of the corresponding mode (ω0 = 2π/T0 = 2(gh)1/2/r0), γ is the damping 
constant, ω = 2Ω is the driving frequency, and a is the magnitude of the equilibrium distortion of the 
ocean surface under the static system of tidal forces (that is, the distortion for the planet whose axial 
rotation is synchronized with its orbital revolution). The theoretical value of a is given by Eqs. (11) or 
(18). Although the values of ω and a are fairly well known, the situation is quite different regarding the 
values of ω0 and γ. 

In the limiting case of extremely slow rotation of the earth, the steady-state solution of 
Eq. (20) is q1(t) = a cosωt, q2(t) = a sinωt. This solution describes the quasistatic elliptical distortion 
whose axis follows adiabatically the slowly rotating earth-sun (earth-moon) line. The major axis of the 
ellipse at any moment is oriented along this line. The displacement of the water level from its mean 
position in the equatorial plane in this limiting case is given by: 

 

∆r(θ, t) = ∆r1(θ, t) + ∆r2(θ, t) = q1(t) cos 2θ  + q2(t) sin 2θ  =  
a (cos 2Ω t cos 2θ  + sin 2Ω t sin 2θ)  =  a cos 2(Ω t − θ ).  

(21) 
 

To find the distortion of the water surface for an arbitrary value of ω, we can use the relevant 
well-known steady-state solution to Eq. (20) for the normal coordinates q1(t) and q2(t): 

 

q1(t) = q0 cos (ωt – δ),   q2(t) = q0 sin (ω t − δ), (22) 
 

where their common amplitude q0  and phase lag δ are given by: 
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(See, for example, Ref. 18, pp. 372 – 373). Therefore the resulting distortion of the water surface under 
the tidal forces is given by  
 

∆r(θ, t) = ∆r1(θ, t) + ∆r2(θ, t) = q1(t) cos 2θ  + q2(t) sin 2θ  =  
q0 [cos (2Ω t – δ) cos 2θ  + sin (2Ω t – δ) sin 2θ]  =  q0 cos 2(Ω t − δ/2 − θ ).  

(24) 
 

We see from Eq. (24) that at any time t the maximum (high water) of the tidal wave circulating 
around the earth is located at the position defined by the angle θmax = Ω t − δ/2. That is, the position of 
the maximum lags behind the sun (moon) by the angle δ/2. If γ << ω, it follows from Eq. (23) that this 
retarding angle is almost zero if ω  < ω0. In other words, the marine tide would be nearly the equilib-
rium tide with the high-water time coinciding with culminations of the sun (moon) if the natural period 
of the circulating wave were less than the 12-hour driving period (that is, if T0 < T). However, for our 
model of the ocean, we estimate the natural period to be close to 30 hours. Therefore the situation cor-
responds to ω  > ω0, when the steady-state forced oscillations occur nearly in the opposite phase rela-
tive to the driving force. In this case the tide should be inverted with respect to the equilibrium one. 
The retarding angle δ/2 approaches π/2 according to Eq. (23), which means that for a given equatorial 
point, the high water occurs when the sun (moon) is almost at the horizon (rather than at zenith or na-
dir). 

At any given place on the equator, it follows from Eq. (24) that the water level (above the aver-
age value) varies with t according to z(t) = q0 cos (2Ω t – δ), where t = 0 corresponds to the culmination 
of the sun (moon) at the place in question. We can expect that for the model of a water canal of uniform 
depth, the value of q0 given by Eq. (23) is more or less reliable because hydrodynamics allows us to 
estimate the natural frequency ω0 = 2π/T0 = 2(gh)1/2/r0 by using the known speed v = (gh)1/2 of very long 
gravitational waves. However, considerable uncertainty is related to the damping factor γ. If we assume 
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that the damping is small (γ << ω0), we can conclude that the orientation of the tidal bulges deviates 
only slightly from the line perpendicular to the sun-earth (moon-earth) line, but the particular value of 
this deviation remains indefinite. 

In the above discussion, we considered only the steady-state oscillation of the ocean surface 
(the stationary wave), assuming that the transient is already over. For this steady motion to establish 
itself, some friction (even if very small) is necessary. In the problem under consideration, we are con-
cerned with the water motion caused solely by the eternal tidal forces, and therefore we have had centu-
ries and even millennia to wait for the fading away of the transient. Therefore our use of the steady-
state solution is appropriate for tides. We also emphasize that in the dynamical theory of tides, the driv-
ing tide-generating forces are perfectly well known, so that most uncertainties originate primarily from 
a very poor correspondence between the simple model of the dynamical system and the real oceans of 
the earth. 

 

XXII..  RReeaall--wwoorrlldd  ccoommpplliiccaattiioonnss  
The pattern of tide-generating forces is coupled to the position of the moon (and the sun) with 

respect to the earth. For any place on the earth’s surface, the relative position of the moon has an aver-
age periodicity of 24 hours 50 minutes. The lunar tide-generating force experienced at any location has 
the same periodicity. When the moon is in the plane of the equator, the force runs through two identical 
cycles within this time interval because of the quadrupole symmetry of the global pattern of tidal 
forces. Consequently, the tidal period is 12 hours 25 minutes in this case (the period of the semidiurnal 
lunar tide). However, the lunar orbit doesn’t lie in the plane of the equator, and the moon is alternately 
to the north and to the south of the equator. The daily rotation of the earth about an axis inclined to the 
lunar orbital plane introduces an asymmetry in the tides. This asymmetry is apparent as an inequality of 
the two successive cycles within 24 hours 50 minutes.  

Similarly, the sun causes a semidiurnal solar tide with a 12-hour period, and a diurnal solar tide 
with a 24-hour period. In a complete description of the local variations of the tidal forces, still other 
partial tides play a role because of further inequalities in the orbital motions of the moon and the earth. 
In particular, the elliptical shape of the moon’s orbit produces a 40 percent difference between the lunar 
tidal forces at the perigee and apogee of the orbit. Also the inclination of the moon’s orbit varies peri-
odically in the interval 18.3° – 28.6°, causing a partial tide with a period of 18.6 years. The interference 
of the sun-induced tidal forces with the moon-induced tidal forces (the lunar forces are about 2.2 times 
as strong) causes the regular variation of the tidal range between spring tide, when the range has its 
maximum (occurring at a new moon and at a full moon, when the sun and moon are in the same or in 
the opposite directions), and neap tide, when the range has its minimum (which occurs at intermediate 
phases of the moon). The amplitude of a spring tide may be 2.7 times the amplitude of a neap tide. 

Because the earth is not surrounded by an uninterrupted water envelope of equal depth, but 
rather has a very irregular geographic alternation of land and seas with complex floor geometry, the 
actual response of the oceans and seas to the tidal forces is extremely complex. In enclosures formed by 
gulfs and bays, the local tide is generated by an interaction with the tides of the adjacent open ocean. 
Such a tide often takes the form of a running tidal wave that circulates within the confines of the enclo-
sure. In some nearly enclosed seas, such as the Mediterranean, Black, and Baltic seas, a steady-state 
oscillation in the form of a standing wave, or tidal seiche, may be generated by the tidal forces. In these 
seas, the tidal range of sea level is only on the order of centimeters. In the open ocean, it generally is on 
the order of decimeters. 

In bays and adjacent seas, however, the tidal range may be much greater because the shape of a 
bay or adjacent sea may favor the enhancement of the tide inside. In particular, there may be a reso-
nance response of the basin concerned with the tide. Tides are most easily observed along seacoasts, 
where the amplitudes are exaggerated. When tidal currents run into the shallow waters of the continen-
tal shelf, their rate of advance is reduced, the energy accumulates in a smaller volume, and the rise and 
fall are amplified. The details of tidal motions in coastal waters, particularly in channels, gulfs, and 
estuaries, depend on the details of coastal geometry and water-depth variation over a complex sea floor. 
Tidal amplitudes and phase lags, the contrast between spring and neap tides, and the variation of times 
of high and low tide all change widely from place to place.  

For the aforementioned reasons, a purely theoretical calculation of the times and heights of 
tides at a particular location is practically impossible. Nevertheless, for a given place on a coast, the 
tides can be quite successfully predicted on the basis of accumulated long-term observations of the 
tides at the place concerned. The analysis of the observations relies on the fact that any tidal pattern in 
time is a superposition of variations associated with periodicities in the motions of the moon and the 
sun relative to the earth. The periods involved are the same everywhere on the earth, but the relative 
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amplitudes and phases of their contributions are highly variable from one place to another. Observa-
tions over a sufficient time make it possible to calculate which contributions are significant at a particu-
lar location and, thus, to forecast tidal times and heights. It is common that 40 harmonic components 
may be significant for practical calculations at one location.17  

 

XXIIII..  TThhee  hheeaavveennllyy  eevvoolluuttiioonn  uunnddeerr  tthhee  ttiiddaall  ffoorrcceess  
When the forced motion occurs exactly in the same or opposite phase with respect to the driv-

ing force, no energy exchange occurs on the average between the external source and the oscillatory 
system. To explain the secular variation (the retardation) of the earth’s axial rotation under the tidal 
forces, we have to take friction into account.  

One may wonder why the dissipation of mechanical energy in the tides has a scale that seems 
very modest. The point is that only the wave circulates around the globe, not the water itself. The phase 
lag δ of the steady-state forced oscillation behind the periodic driving force is determined by Eq. (23). 
For the mode of oscillations in which we are interested, this phase-frequency characteristic is almost a 
step function (zero for ω < ω0, that is, for T > T0, and −π otherwise). Only near resonance (ω ≈ ω0) is 
this step slightly smoothed over. Therefore the displacement of the tidal water bulges from the line per-
pendicular to the sun-earth (moon-earth) axis is very small. 

 
Figure 4.  Gravitational interaction between the moon and the tidal bulges.  

However, this displacement, which destroys the symmetry of the system (Fig. 4), is absolutely 
necessary in principle in order that the driving tidal forces be capable of maintaining the circulating 
tidal wave (that is, of preventing it from damping out). If the earth is taken as the reference frame, we 
can see that by virtue of this phase shift and the corresponding displacement of bulges, the tidal forces 
exert a retarding torque relative to the earth’s axis and thus do non-zero net work on the system. This 
work compensates for the frictional losses experienced by the tidal traveling surface wave and meas-
ures the gradual reduction of the mechanical energy of the system. The energy is provided by the axial 
rotation (spin) of the earth. Hence the spin secularly slows down and the angular momentum of the 
axial rotation diminishes.  

Looking at the whole system from the inertial reference frame, we should remember that the 
sun (moon) interacts with the earth only by its central gravitational force. If the bulges were oriented 
exactly along or perpendicularly to the sun-earth (moon-earth) axis, this gravitational force would not 
exert a torque on the earth. If we consider the gravitational forces F1 and F2 (Fig. 4) exerted on the 
bulges, we conclude that the retarding torque about the earth’s axis, which slows down the axial rota-
tion, is due to the above-mentioned displacement of the bulges which destroys the symmetry of the 
system with respect to the earth-sun (earth-moon) line.  

However, the total torque of the central gravitational field of the sun (moon) exerted on the 
earth and the bulges of its liquid shell, measured relative to the sun (or to the moon for moon-induced 
tides), is zero. Hence the total angular momentum of the system is conserved, as it should be in any 
closed system. The diminishing of the earth’s spin due to tidal friction means that the orbital momen-
tum of the system slowly increases during the tidal evolution. The earth’s orbit gradually expands. The 
lack of symmetry (produced by tidal friction) does not influence the conservation of total angular mo-
mentum, although it causes a slow secular redistribution of the angular momentum between the spin 
and the orbital motion. As the orbit expands, the mechanical energy of the orbital motion also in-
creases. This additional mechanical energy, as well as the dissipated energy, is borrowed from the en-
ergy of axial rotation.19 

This conclusion about expanding the moon’s orbit, derived from the conservation of angular 
momentum, is often encountered in the literature (see, for example, Ref. 20). Although quite convinc-
ing, it nevertheless leaves the actual mechanism unexplained. To understand the physical reason for 
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this phenomenon, it helps to take the forces into account. If we consider the properties of the gravita-
tional forces F1′ and F2′ (see Fig. 4) that are exerted on the moon by the earth’s tidal bulges and their 
influence on the orbital motion, we draw attention to a subtle peculiarity that deserves discussion. 
While the orbit expands, the orbital velocity of the moon diminishes. However, from the asymmetry in 
the configuration that is responsible for the evolution, we can conclude that the resultant gravitational 
force exerted on the moon by the tidal bulges is directed forward, in the direction of the orbital motion. 
How can this accelerating force slow down the orbital motion? All authors who write about tidal evolu-
tion leave this question unanswered.  

This situation is similar to the widely known paradox of an earth satellite in a circular orbit that 
gradually descends in the rarified upper atmosphere: Intuitively we expect that the weak atmospheric 
drag should slow down the satellite, but instead, the satellite gains speed as its orbit gradually de-
creases. Because of air resistance, the satellite is accelerated in the direction of its motion, as if the re-
tarding force of air resistance were pushing the satellite forward. An explanation of this so-called aero-
dynamical paradox of the satellite can be found in Ref. 21. 

 

 
Figure 5. The main (central) gravitational pull of the earth exerted on the moon. 

To understand the slowing down of the moon during tidal evolution, we must take into account 
that the moon gradually spirals away from the earth and its orbit spreads out, so that the actual motion 
of the moon occurs along an expanding spiral. A portion of this trajectory (with a strongly exaggerated 
expansion) is shown schematically in Fig. 5. Because of this expansion, the perpendicular to the trajec-
tory is directed not to the center of the earth but rather slightly in front of the center. Therefore the main 
gravitational pull F exerted on the moon by the earth has a retarding tangential component Fτ directed 
back along the trajectory. This component is greater in magnitude than the forward-directed tangential 
component of F1′ and F2′ (see Fig. 4) that are exerted on the moon by the tidal bulges (this component 
is not shown in Fig. 5). Hence the total tangential acceleration of the moon is directed against the ve-
locity. 

Generally, in order to explain tidal evolution, that is, the reduction of spin and the secular varia-
tion of the orbits of gravitationally coupled celestial bodies, it is necessary to take into account both the 
dynamic distortion of the spherical shape of the body (and of its liquid shell, if any) under the tidal 
forces, and the additional displacement of the bulges caused by tidal friction. The non-uniform gravita-
tional field of one body in an orbit about another distorts the shape of the second. The dissipation of 
energy stored in the resultant tidal distortions leads to a coupling that causes secular changes in the 
orbit and in the spins of both bodies. Retardation of the axial rotation and evolution of the orbit will 
continue until the axial rotation is synchronous with the mean orbital revolution. 

This effect is vital to an understanding of the history of the earth and moon. That the moon al-
ways keeps the same face turned toward the earth is attributed to the past effects of tidal friction in the 
moon. The dissipation of tidal energy on the earth results in a slowing of the earth’s axial rotation while 
the moon’s orbit is gradually expanding. Both the currently observed increase in the length of the day 
of 0.0016 second per century and the recession of the moon of 3 to 4 cm per year are understood as 
consequences of the tides raised by the moon on the earth. Billions of years from now the moon will be 
so far from the earth that the duration of the month will be equal to the duration of the day. The tidal 
evolution of the system ends with synchronization of the axial rotation of both orbiting bodies with 
their orbital revolution. The length of both the day and month in this final state of coherent rotation will 
be approximately 50 present days, as can be calculated on the basis of angular-momentum conservation 
(see, for example, Ref. 13). Similarly, tidal effects on the earth influence its axial rotation and its orbital 
revolution around the sun.22 

Tidal dissipation accounts for the current states of axial rotation of several planets, the spin 
states of most of the planetary satellites, and the spins and orbits of close binary stars. For example, all 
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the major and close planetary satellites in the solar system (with the exception of Saturn’s satellite Hy-
peron) are observed to be rotating synchronously with their orbital motion. The distant planet Pluto and 
its satellite Charon are the pair in the solar system that has almost certainly reached the end point where 
further tidal evolution has ceased. In this state the orbit is circular, with both bodies rotating synchro-
nously with the orbital motion and both spin axes perpendicular to the orbital plane. Similarly, many 
close binary stars are observed to have circular orbits and synchronized spins, providing numerous ex-
amples of evolution under tidal forces elsewhere in the Milky Way. The role of tides in the cosmogony 
was first recognized by the astronomer George Darwin who developed a theory of the heavenly evolu-
tion under tidal friction.23 

Another interesting manifestation of the tidal forces is the Roche limit, the minimum distance to 
which a large (natural) satellite can approach its primary body without being torn apart by tidal forces. 
To evaluate this critical distance Rc, we can equate the vertical tidal force, Eq. (6), exerted on a mass 
point located at θ  = 0 or θ = π  on the surface of a satellite of radius rsat and mass msat by its primary of 
mass M, and the force of self-gravitation of the satellite (that is, the force of gravitational attraction of 
this mass point m to the satellite):  

,2 2
sat

sat
sat3

c r
mGmr

R
GmM =  

whence   

.22
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planet3

sat
satc ρ

ρr
m

MrR ==  (25) 

In Eq. (25) rplanet is the radius of the primary, ρ  is its mean density, and ρsat is the satellite’s mean den-
sity. If the satellite and its primary are of similar composition (ρ ≈ ρsat), the theoretical limit is about 
21/3 = 1.26 times the radius of the larger body. The famous rings of Saturn lie inside Saturn’s Roche 
limit and may be the debris of a demolished moon. 
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