15/09/2016 Gravitational Tides

## **Gravitational Tides**

Look closely at the **gravitational force** acting on a moon as it orbits its planet:



If we subtract the center of mass force, we see the **differential force** acting on it:



So gravity "stretches" and "squashes" a moon!

Let's look at this mathematically. The force of gravity is:

$$F = -\frac{GMm}{r^2}$$

So the differential force (also called the tidal force) across a

15/09/2016 Gravitational Tides

distance dr is

$$dF = \left(\frac{dF}{dr}\right)dr = \frac{2GMm}{r^3}dr$$

Note that

- the tidal force is proportional to the mass of the primary (M)
- the tidal force is inversely proportional to the distance *cubed*.

Note also that it works both ways -- the moon also stretches the planet!

Why is it called a tidal force?

What is stronger on the Earth, the tidal force from the moon or the tidal force from the Sun?

$$\frac{F_{tidal,moon}}{F_{tidal,sun}} = (\frac{M_{moon}}{M_{sun}})(\frac{r_{sun}}{r_{moon}})^3$$

$$= 2.2$$

So the moon exerts a stronger force, but the Sun's tidal force can be significant. Hence the concept of **spring tides** and **neap tides**:

- Spring Tides: Sun and Moon in alignment; tidal forces add. *Big tides!*
- Neap Tides: Sun and Moon 90 degrees apart; tidal forces counteract. *Small tides*.

Remember: Tides are not merely a water effect! The Earth's surface

15/09/2016 Gravitational Tides

also has tidal bulges, about 10cm in height. And the moon has an even greater tidal bulge -- 20m high.

Thought experiment: What happens when you keep squeezing and stretching a piece of silly putty? What does this have to do with tides?