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PREFACE.

/

THE methods of investigation adopted in this work are
in accordance with what may be called the modern school
of practical astronomy, or more distinctively the Ger-
man school, at the‘ head of which stands the unrivalled
BesseL. In this school, the investigations both of the
general problems of Spherical Astronomy and of the Theory
of Astronomical Instruments are distinguished by the gene-
rality of their form and their mathematical rigor. When
approximative methods are employed for convenience in
practice, their degree of accuracy is carefully determined by
means of exact formul® previously investigated ; the latter
being developed in converging series, and only such terms
of these series being neglected as can be shown to be insen-
sible in the cases to which the formule are to be applied.
And it is an essential condition of all the methods of com-
putation from data furnished by observation, that the errors
of the computation shall always be practically insensible in
relation to the errors of observation: so that our results
shall be purely the legitimate deductions from the observa-
tions, and free from all avoidable error.

It is another characteristic feature of modern spherical
astronomy, that the final formule furnished to the practical
computer are so presented as seldom to require accompany-
ing verbal precepts to distinguish the species of the unknown
angles and arcs; and this results, in a great measure, from
the consideration of the general spherical triangle, or that in

which the six parts of the triangle are not subjected to the
3



4 PREFACE.

condition that they shall each be less than 180°, but may
have any values less than 360°, all ambiguity as to their
species being removed by determining them, when necessary,
by two of their trigonometric functions, usually the sine and
the cosine. This feature is mainly due to GAuss, and was
prominently exhibited in his Theoria Motus Corporum Cee-
lestium, published in 1809. The English and American
astronomers have been slow to adopt this manifest improve-
ment; in evidence of which I may remark that the general
spherical triangle was not treated of in any work in the
English language, so far as I know, prior to the publication
of my Treatise on Plane and Spherical Trigonometry, in the
year 1850. In the present work, I assume the reader to be
acquainted with this form of spherical trigonometry, and to
accept its fundamental equations in their utmost generality.

A third and eminently characteristic feature of modern
astronomy, is the use which it makes, in all its departments,
of the method of least squares, namely, that method of
combining observations which shall give the most probable
results, or which shall be exposed to the least probable errors.
This method is also due to GAuss, who (though anticipated
in the publication of one of its practical rules by LEGENDRE)
was the first to give a philosophical exposition of its princi-
ples. The direct effect of this improvement is not only that
the most probable result in each case is obtained, but also
that the relative degree of accuracy of that result is deter-
mined, and thus the degree of confidence with which it may
be received and the weight which it may be allowed to have.
in subsequent discussions. Judiciously employed, it serves
to indicate when a particular process has reached the limit
of accuracy which it can afford, thereby saves fruitless
labor, directs inquiry into new channels, and contributes
greatly to accelerate the progress of the science.

Whilst the science has been rapidly advancing in Europe,
we have in this country not been idle. Two of the most
important improvements in practical astronomy have had
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than usual completeness. The fundamental formulse adopted
are those of BESSEL’S theory, but the solutions of the various
problems relating to the prediction of solar eclipses for the
earth generally are mostly new. The rigorous solutions of
these problems given by BESSEL in his Analyse der Finster-
nesse are not required for the usual purposes of prediction,
however interesting they may be as specimens of refined
and elegant analysis. On the other hand, the approximate
solutions commonly given appear to be unnecessarily rude.
Those that I have substituted will be found to be very little
- if at all more laborious than the latter, while they are almost
as precise as the former, and by a very little additional labor
(that is, by repeating only some parts of the computation
for a second or third approximation) may be rendered quite
exact.

So far as I can find, no one has heretofore treated distinct-
ively of the occultations of planets by the moon, and these
phenomena have been dismissed as simple cases of the
general theory of eclipses, in which both the occulting and
the occulted body are spherical. But in almost every oc-
cultation of one of the principal planets, the planet will be
either a spheroidal body fully or partially illuminated by
the sun, or a spherical body partially illuminated : so that,
in the general case, we have to consider the disc of the oc-
culted body as bounded by an ellipse or by two different
semi-ellipses. I have discussed this general case at length,
and have adapted the theory to each planet specially. The
additional computations required to take into account the
true figure of the planet’s disc are sufficiently brief and
simple. The case of the occultation of a cusp of Venus or
Mercury is included in the discussion, and also the occulta-
tion of Saturn’s rings.

The well known formula for predicting the transits of the
inferior planets over the sun’s dise, first given by LAGRANGE,
is here rendered more accurate by introducing a considera-
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to the rejection of nearly the same observations as that of
PEIrce.

The plates at the end of the work exhibit in minute
detail the instruments now chiefly employed by astronomers.
To have given more, with the necessary explanations, would
have led me too far into the mere history of the subject, and
would have occupied space which I thought it preferable to
fill with discussions relating to the leading instruments now
in use. The scale of these plates is purposely made quite
small; but the great precision with which they are executed
will enable the reader to measure from them the dimensions
of all the important parts of each of the principal instru-
ments. I am greatly indebted for the perfection of these
drawings to the engravers, the Messrs. ILLMAN BROTHERS, of
Philadelphia.

Such auxiliary tables as seemed to be necessary to the

"reader in using these volumes have been given at the end
of Vol. II. Some of these are new. Most of those which
have been derived from other sources have been either re-
computed or tested by differences and corrected. To insure
their accuracy, they have also been tested by differences
after being in type.

For the very complete index to the whole work, I am
indebted to.my friend, Prof. J. D. CrREHORE, of Washington
University.

In conclusion, I desire to express my obligations to those
citizens of Saint Louis who, without solicitation, have gene-
rously assumed a share of the risk of publication. Their
liberal spirit has been met by a corresponding liberality on
the part of my publishers, who have spared no expense in
the typographical execution. I shall be content if their
expectations are not wholly disappointed, and the work
contributes in any degree to the advancement of the noblest
of the physical sciences.

WasHINGTON UNIVERSITY,
SaiNt Lours, January 1, 1863.
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SPHERICAL ASTRONOMY.

CHAPTER L

THE CELESTIAL SPHERE—SPHERICAL AND RECTANGULAR
CO-ORDINATES.

1. FroM whatever point of space an observer be supposed to
view the heavenly bodies, they will appear to him as if situated
upon the surface of a sphere of which his eye is the centre. If|
without changing his position, he directs his eye successively to
the several bodies, he may learn their relative directions, but
cannot determine either their distances from himself or from
each other.

The position of an observer on the surface of the earth is,
however, constantly changing, in consequence, 1st, of the diur-
nal motion, or the rotation of the earth on its axis; 2d, of the
annual motion, or the motion of the earth in its orbit around
the sun.

The changes produced by the diurnal motion, in the appa-
rent relative positions or directions of the heavenly bodies, are
different for observers on different parts of the earth’s surface,
and can be subjected to computation only by introducing the
elements of the observer’s position, such as his latitude and
longitude.

But the changes resulting from the annual motion of the
earth, as well as from the proper motions of the celestial bodies
themselves, may be separately considered, and the directions
of all the known celestial bodies, as they would be seen from

the centre of the earth at any given time, may be computed
Vor. L—32 ' 17



18 THE CELESTIAL SPHERE.

according to the laws which have been found to govern the
motions of these bodies, from data furnished by long series of
observations. The complete investigation of these changes and
their laws belongs to Physical Astronomy, and requires the consi-
deration of the distances and magnitudes as well as of the direc-
tions of the bodies composing the system.

Spherical Astronomy treats specially of the directions of the
heavenly bodies; and in this branch, therefore, these bodies are
at any given instant regarded as situated upon the surface of a
sphere of an indefinite radius described about an assumed
centre. It embraces, therefore, not only the problems which arise
from the diurnal motion, but also such as arise from the annual
motion so far as this affects the apparent positions of the hea-
venly bodies upon the celestial sphere, or their directions from
the assumed centre.

SPHERICAL CO-ORDINATES.

2. The direction of a point may be expressed by the angles
which a line drawn to it from the centre of the sphere, or point
of observation, makes with certain fixed lines of reference. But,
since such angles are directly measured by arcs on the surface
of the sphere, the simplest method is to assign the position in
which the point appears when projected upon the surface of the
sphere. For this purpose, a great circle of the sphere, supposed
to be given in position, is assumed as a primitive circle of refer-
ence, and all points of the surface are referred to this circle by a
system of secondaries or great circles perpendicular to the primi-
tive and, consequently, passing through its poles. The position
of a point on the surface will then be expressed by two spherical
co-ordinates: namely, 1st, the distance of the point from the pri-
mitive circle, measured on a secondary; 2d, the distance inter-
cepted on the primitive between this secondary and some given
point of the primitive assumed as the origin of co-ordinates.

‘We shall have different systems of co-ordinates, according to
the circle adopted as a primitive circle and the point assumed as
the origin.

8. First system of co-ordinates.—Altitude and azimuth.—In this
system, the primitive circle is the horizon, which is that great
circle of the sphere whose plane touches the surface of the

_— ==




20 THE CELESTIAL SPHERE.

The altitude of a point of the celestial sphere is its distance
from the horizon measured on a vertical circle, and its azimuth is
the arc of the horizon intercepted between this vertical circle
and any point of the horizon assumed as an origin. The origin
from which azimuths are reckoned is arbitrary; so also is the
direction in which they are reckoned; but astronomers usually
take the south point of the horizon as the origin, and reckon
towards the right hand, from 0° to 860°; that is, completely
around the horizon in the direction expressed by writing the
cardinal points of the horizon in the order S.W.N.E. We
may, therefore, also define azimuth as the angle which the
vertical plane makes with the plane of the meridian.

Navigators, however, usually reckon the azimuth from the
north or south points, according as they are in north or south
latitude, and towards the east or west, according as the point
of the sphere considered is east or west of the meridian: so that
the azimuth never exceeds 180°. Thus, an azimuth which is
expressed according to the first method simply by 200° would
be expressed by a navigator in north latitude by N. 20° E., and
by a navigator in south latitude by S. 160° E., the letter prefixed
denoting the origin, and the letter affixed denoting the direction
in which the azimuth is reckoned, or whether the point consi-
dered is east or west of the meridian.

When the point considered is in the horizon, it is often
referred to the east or west points, and its distance from the
nearest of these points is called its amplitude. Thus, a point in
the horizon whose azimuth is 110° is said to have an amplitude -
of W.20°N.

Since by the diurnal motion the observer’s horizon is made
to change its position in the heavens, the co-ordinates, altitude
and azimuth, are continually changing. Their values, therefore,
will depend not only upon the observer’s position on the earth,
but upon the time reckoned at his meridian.

Instead of the altitude of a point, we frequently employ its
zenith distance, which is the arc of the vertical circle between the
point and the zenith. The altitude and zenith distance are,
therefore, complements of each other.

We shall hereafter denote altitude by A, zenith distance by ¢,
azimuth by 4. We shall have then

{=090°—h~ h=90°—¢
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The value of { for a point below the horizon will be greater
than 90°, and the corresponding value of A, found by the for-
mula A =90° — ¢, will be negative: so that a negative altitude
will express the depression of a point below the horizon. Thus,
a depression of 10° will be expressed by A= —10°, or { = 100°.

4. Second system of co-ordinates.— Declination and hour angle.—In
this system, the primitive circle is the celestial equator, or that
great circle of the sphere whose plane is perpendicular to the
axis of the earth and, consequently, coincides with the plane of
the terrestrial equator. This circle is also sometimes called the
equinoctial.

The diurnal motion of the earth does not change the position
of the plane of the equator. The axis of the earth produced to
the celestial sphere is called the axis of the heavens: the points
in which it meets the sphere are the north and south poles of
the equator, or the poles of the heavens.

Secondaries to the equator are called circles of declination, and
also hour circles. Since the plane of the celestial meridian
passes through the axis of the equator, it is also a secondary to
the equator, and therefore also a circle of declination.

Parallels of declination are small circles parallel to the equator.

The declination of a point of the sphere is its distance from the
equator measured on a circle of declination, and its hour angle is
the angle at either pole between this circle of declination and the
meridian. The hour angle is measured by the arc of the equator
intercepted between the circle of declination and the meridian.
As the meridian and equator intersect in two points, it is neces-
sary to distinguish which of these points is taken as the origin
of hour angles, and also to know in what direction the are which
measures the hour angle is reckoned. Astronomers reckon
from that point of the equator which is on the meridian above
the horizon, towards the west,—that is, in the direction of the
apparent diurnal motion of the celestial sphere,—and from 0° to
360°, or from 0* to 24*, allowing 15° to each hour.

Of these co-ordinates, the declination is not changed by the
diurnal motion, while the hour angle depends only on the time
at the meridian of the observer, or (which is the same thing) on
the position of his meridian in the celestial sphere. All the
observers on the same meridian at the same instant will, for the
same star, reckon the same declination and hour angle. We have

.
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thus introduced co-ordinates of which one is wholly independent
of the observer’s position and the other is independent of his
latitude.

We shall denote declination by 8, and north declination will
be distinguished by prefixing to its numerical value the sign -+,
and south declination by the sign —

We shall sometimes make use of the polar distance of a pomt
or its distance from one of the poles of the equator. If we denote
it by P, the north polar distance will be found by the formula

P=90°—3
and the south polar distance by the formula
P—=90° 4

The hour angle will generally be denoted by ¢. It is to be
observed that as the hour angle of a celestial body is continually
increasing in consequence of the diurnal motion, it may be con-
ceived as having values greater than 860°, or 24*, or greater than
any given multiple of 360°. Such an hour angle may be re-
garded as expressing the time elapsed since some given passage
of the body over the meridian. But it is usual, when values
greater than 360° result from any calculation, to deduct 360°.
Again, since hour angles reckoned towards the west are always
positive, hour-angles reckoned towards the east must have the
negative sign : so that an hour angle of 300°, or 20* may also be
expressed by —60°, or —4*,

5. Third system of co-ordinates.— Declination and right ascension.—
In this system, the primitive plane is still the equator, and the
first co-ordinate is the same as in the second system, namely, the
declination. The second co-ordinate is also measured on the
equator, but from an origin which is not affected by the diurnal
motion. Any point of the celestial equator might be assumed
as the origin; but that which is most naturally indicated is
the vernal equinox, to define which some preliminaries are
necessary.

The ecliptic is the great circle of the celestial sphere in which
the sun appears to move in consequence of the earth’s motion in
its orbit. The position of the ecliptic is not absolutely fixed in
space; but, according to the definition just given, its position at
any instant coincides with that of the great circle in which the
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sun appears to be moving at that instant. Its annual change is,
however, very small, and its daily change altogether insensible.

The obliquity of the ecliptic is the angle which it makes with
the equator.

The points where the ecliptic and equator intersect are called
the equinoctial points, or the equinoxes; and that diameter of the
gphere in which their planes intersect is the line of equinozes.

The vernal equinox is the point through which the sun ascends
from the southern to the northern side of the equator; and the
autumnal equinox is that through which the sun descends from the
northern to the southern side of the equator.

The solstitial points, or solstices, are the points of the ecliptic
90° from the equinoxes. They are distinguished as the north-
ern and southern, or the summer and winter solstices.

The equinoctial colure is the circle of declination which passes
through the equinoxes. The solstitial colure is the circle of decli-
nation which passes through the solstices. The equinoxes are
the poles of the solstitial colure.

By the annual motion of the earth, its axis is carried very
nearly parallel to itself, so that the plane of the equator, which
is always at right angles to the axis, is very nearly a fixed plane
of the celestial sphere. The axis is, however, subject to small
changes of direction, the effect of which is to change the
position of the intersection of the equator and the ecliptic, and
hence, also, the position of the equinoxes. In expressing the
positions of stars, referred to the vernal equinox, at any given
instant, the actual position of the equmox at the instant is
understood, unless otherwise stated.

The right ascension of a point of the sphere is the arc of the
equator intercepted between its circle of declination and the
vernal equinox, and is reckoned from the vernal equinox east-
ward from 0° to 360°, or, in time, from 0* to 24%,

The point of observation being supposed at the centre of the
earth, neither the declination nor the right ascension will be
affected by the diurnal motion: so that these co-ordinates are
wholly independent of the observer’s position on the surface of
the earth. Their values, therefore, vary only with the time,
and are given in the ephemerides as functions of the time
reckoned at some assumed meridian.

‘We shall generally denote right ascension by a. As its value
reckoned towards the east is positive, a negative value resulting
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done by referring his zenith to the primitive circle in the same
manner as in the case of any other point.

In the first system, the primitive circle being the horizon, of
which the zenith is the pole, the altitude of the zenith is always
90°, and its azimuth is indeterminate.

In the second system, the declination of the zenith is the same
as the terrestrial latitude of the observer, and its hour angle is
zero. The declination of the zenith of a place is called the
geographical latitude, or simply the latitude, and will be hereafter
denoted by ¢. North latitudes will have the sign +; south
latitudes, the sign —.

In the third system, the declination of the zenith is, as before,
the latitude of the observer, and its right ascension is the same
as the hour angle of the vernal equinox.

In the fourth system, the celestial latitude of the zenith is the
same as the zenith distance of the nonagesimal, and its celestial
longitude is the longitude of the nonagesimal.

It is evident, from the definitions which have been given, that
the problem of determining the latitude of a place by astro-
nomical observation is the same as that of determining the
declination of the zenith; and the problem of finding the lon-
gitude may be resolved into that of determining the right
ascension of the meridian at a time when that of the prime
meridian is also given, since the longitude is the arc of the
equator intercepted between the two meridians, and is, conse-
quently, the difference of their right ascensions.

8. The preceding definitions are exemplified in the following
figures.

Fig. 1 is a stereographic projection of | Fi’; L
the sphere upon the plane of the horizon, -
the projecting point being the nadir. Since % P
the planes of the equator and horizon are 0
both perpendicular to that of the meridian, w N2 E
their intersection is also perpendicular to
it; and hence the equator WQE passes 3
through the east and west points of the L

horizon. All vertical circles passing
through the projecting point will be projected into straight
lines, as the meridian NZS, the prime vertical WZE, and the
vertical circle ZOH drawn through any point O of the- surface
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Hence the latitude of the observer is always equal to the alti-
tude of the north pole. For an observer in south latitude, the
north pole is below the horizon, and its altitude is a negative
quantity: so that the definition of latitude as the altitude of the
north pole is perfectly general if we give south latitudes the
negative sign. The south latitude of an observer considered
independently of its sign is equal to the altitude of the south
pole above his horizon, the elevation of one pole being always
equal to the depression of the other.

9. Numerical expression of hour angles.—The equator, upon
which hour angles are measured, may be conceived to be divided
into 24 equal parts, each of which is the measure of one hour,
and is equivalent to & of 860°, or to 15°. The hour is divided
sexagesimally into minutes and seconds of time, distinguished
from minutes and seconds of arc by the letters ® and * instead
of the accents’ and’/. We shall have, then,

1 = 15° 1= =1% 1+ = 15"

To convert an angle expressed in time into its equivalent in
arc, multiply by 15 and change the denominations * » * into
© 75 and to convert arc into time, divide by 15 and change ® / //
into » » *. The expert computer will readily find ways to
abridge these operations in practice. It is well to observe, for
this purpose, that from the above equalities we also have,

1° =4~ =4

and that we may therefore convert degrees and minutes of arc
into time by multiplying by 4 and changing °’ into ™ *; and
reciprocally.

TRANSFORMATION OF SPHERICAL CO-ORDINATES.

10. Given the altitude (k) and azimuth (A) of a star, or of any point
of the sphere, and the latitude (¢) of the obscrver, to find the declina-
tion (0) and hour angle (1) of the star or the point. In other words,
to transform the co-ordinates of the first system into those of the
second.

This problem is solved by a direct application of the formule
of Spherical Trigonometry to the triangle POZ, Fig. 1, in which,
O being the given star or point, we have three parts given,
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to determine such arcs and angles by both the sine and the
cosine, in order to fix the quadrant in which their values are to
be taken. It has been shown in Spherical Trigonometry that
when we consider the general triangle, or that in which values
are admitted greater than 180°, there are two solutions of the
triangle in every case, but that the ambiguity is removed and
one of these solutions excluded *when, in addition to the other
data, the sign of the sine or cosine of one of the required parts is
given.” [Sph. Trig. Art. 113.] In our present problem the sign
of cos 8 is given, since it is necessarily positive; for ¢ is always
numerically less than 90°, that is, between the limits 4-90° and
—90°. Hence cos ¢ has the sign of the second member of (2) or
(5), and sin ¢ the sign of the second member of (3) or (6), and ¢
is to be taken in the quadrant required by these two signs. Since
h also falls between the limits +90° and —90°, or ¢ between 0°
and 180°, cos A, or sin ¢, is positive, and therefore by (3) or (6)
sin ¢ has the sign of sin 4; that is, when 4 < 180° we have ¢ <
180°, and when A > 180° we have ¢{> 180°,—conditions which
also follow directly from the nature of our problem, since the
star is west or east of the meridian according as A <180° or A
>180°. The formula (1) or (4) fully determines &, which will
always be taken less than 90°, positive or negative according to
the sign of its sine.*

To adapt the equations (4), (5), and (6) for logarithmic compu-
tation, let m and M be assumed to satisfy the conditions [Pl
Trig. Art. 174],

m sin M —sin { cos A 7
m cos M —cos )

the three equations may then be written as follows:

cos8 d cost=m cos (¢ — M)
cos 88in ¢t =sin { sin 4

sind=m sin (¢ — M)
} ®

If we eliminate m from these equations, the solution takes the
following convenient form :

* There are, however, special problems in which it is convenient to depart from
this general method, and to admit declinations greater than 90°, as will be seen
hereafter.



80 THE CELESTIAL SPHERE.

tan M —=—tan { cos 4
tan ¢ __tan A sin M 9
" cos (g — M) ®

tan ¢ —tan (¢ — M) cos?

in the use of which, we must observe to take ¢ greater or less
than 180° according as A is greater or less than 180°, since the
hour angle and the azimuth must fall on the same side of the
meridian.

ExampLE.—In the latitude ¢ =88° 58’ 53", there are given for
a certain star { = 69° 42’ 30”’, 4 =3800° 10’ 30"’ ; required J and ¢
The computation by (9) may be arranged as follows :*

log tan ¢ 0.4820966 '
¢= 88°68/ 537 logcos A 9.7012695 log tan A n0.2856026
M= 53 39 41.98 logtan i 0.1833561 log sin M 9.9060828
¢—M— —14 40 48.98 logtan (p—M) n9.4182633 log sec (9—A) 0.0144141
t= 804 656 26.49 log cos ¢ 9.7677677 log tan ¢ n0.15669995

d= —8 81 46.56 logtand £9.1760810

Converting the hour angle into time, we have ¢=20* 19 41°.766.

11. The angle POZ, Fig. 1, between the vertical circle and
the declination circle of a star, is frequently called the parallactic
angle, and will here be denoted by q. To find its value from the
data ¢, 4, and ¢, we have the equations

cos 8 cos ¢ =—sin { 8in ¢ 4 cos { cos ¢ cos A 10
cos 4 8in ¢ = cos ¢ 8in 4 10
which may be solved in the following form :

fsin F=sin {
fcos F—=cos { cos A

cos 8 cos ¢ =f cos (¢ — F) a1
cos & 8in ¢ =cos ¢ sin A
or in the following:
g sin G=sin ¢
g cos G=cos ¢ cos A (12)

cos 8 cos g =g cos ({— @)
cos 4 8in g=co8 ¢ 8in 4

or again in the following:

* In this work the letter n prefixed to a logarithm indicates that the number to
which it corresponds is to have the negative sign.
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tan G —tan gsec 4
tan A cos G (13)

ta —_—_——

" 1= o €CE—&

and, in the use of the last form, it is to be observed that ¢ is to
be taken greater or less than 180° according as A is greater or
less than 180°, as is evident from the preceding forms.

12. If, in a given latitude, the azimuth of a star of known
declination is given, its hour angle and zenith distance may be
found as follows. We have

cos t 8in ¢ —8in ¢ cot 4 =cos ¢ tan &
cos £ sin ¢ —sin { cos ¢ cos A —sin 3
The solution of the first of these is effected by the equations

b sin B=—sin ¢
bcos B=cot 4
gin (B —t) = cos qpbtan é
and that of the second by

¢sin C=sin ¢
ccos C=cos ¢ co8 A

sin (0-:)=5'"7‘-’

13. Finally, if from the given altitude and azimuth we wish to
find the declination, hour angle, and parallactic angle at the
same time, it will be convenient to use Gauss’s Equations, which
for the triangle ABC, Fig. 8, are

cos }asin} (B4+C)=cosd(b—c)cost A

cosfacos 3 (B4+C)=cosd (b4c)sini A B)

sin $ asin § (B—C)=sin } (b—c)cos 1 A

sinjacos 3 (B—C)=sin }§ (b4c)sin $ A
which are to be solved in the usual manner [Sph. Trig. Art.
116] after substituting the values A =180° — 4, b=h, ¢c=
90° — ¢, a=90°—3, B=¢, C=q.

14. Given the declination (6) and hour angle (1) of a star, and the
latitude (¢), to find the zenith distance ({) and azimuth (A? of the star.
That is, to transform the co-ordinates of the second system into
those of the first.

We take the same general equations (&) of Spherical Trigo-
nometry which have been employed in the solution of the pre-
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For verification we can use the equation

sin { sin A =cos 3sin ¢
log sin £ 9.9721748 log cos & 9.9951697

log sin 4 9.9367621 log sin ¢t 9.9187672
9.9089869 9.9089369
ExampLE 2.—In latitude ¢ = —48° 32/, there are given for a

star, 3 =44° 6’ 0"/, t=17* 25" 4*; required 4 and ¢.

We find 4 =241° 53’ 83".2, £ =126° 25 6.6; the star is
below the horizon, and its negative altitude, or depression, is
h=—36° 25’ 6.6.

If the zenith distance of the same star is to be frequently com-
puted on the same night at a given place, it will be most readily
done by the following method. In the first equation of (14)

substitute
cost—1—2sin* § ¢
then we have
cos { =co8 (¢« ) —2 cos ¢ cos 3 sin® } ¢

where ¢~ d signifies either ¢ — & or 8 — ¢, and if 8> ¢ the latter
form is to be used. Subtracting both members from unity, we
obtain
sin® § { —=sin® } (¢~ &) 4 cos ¢ cos 3 sin® } ¢
Now let

m =1V cos ¢ co8 &

n=sin § (¢+3)
then we have (

8in § {=n H_"ﬂi':’“
n

and hence, by taking an auxiliary N such that

tanN:%‘sin;t

we have an
. n m .
o “‘_coal\?_sinN'sln bt
The second form for sin } ¢ will be more precise than the first
when sin IV is greater than cos N.
The quantities m and » will be constant so long as the decli-
nation does not vary.

15. If the parallactic angle ¢ (Art. 11) and the zenith distance
Vor. L—3
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the point F changes its position on the horizon with the time;
but its position depends only on the time or the hour angle
ZPO, and not upon the declination of 0. The elements of the
position of F may therefore be previously computed for succes-
sive values of &

We have in the triangle PFS, right-angled at S, FPS=t,
PS8 =180° — ¢; and if we put

A=FS, B=PF—90° =180°— PFS.
we find
tan @ —sin ¢ tan ¢, tan B —cot ¢ cost, coty — sin B tant
‘We have now in the triangle HOF, right-angled at H,
B 4 3= OF, y = HFO, h = OH,
and if we put
u=HF=HS—FS=A—a,
we find
tan u =cos y tan (B + 9) A=A +u
sin A =sin y sin (B4 8) or, tan h —=tanysinu.

To find the parallactic angle ¢g=POZ, we have in the triangle

HOF
tan ¢ = cot y sec (B + 3)

In the Gaussian table for Altona as given in the ¢ Hiilfstafeln”
we find five columns, which give for the argument ¢, the quan-
tities @, B, log cos 7, log sin 7, log cot 7, the last three under
the names log C, log D, and log E, respectively. With the aid
of this table, then, the labor of finding any one of the quan-
tities A, 4, ¢ is reduced to the addition of two logarithms,
namely:

tan u = C'tan (B +49) gin A = D sin (B 4 9)
A=@a+u tan g = E sec (B4 3)

The formulee for the inverse problem (of Art. 10) may also be
found thus. Let G' be the intersection of the equator and the
vertical circle through O, and put B=HG, v« =DG, A= QG,
7=24GQ; then we readily find

tan  —sin ¢ tan A, tan B—=cot ¢ cos A4, cot y—=sin Btan 4

which are of the same form as those given above, with the ex-
change of 4 for &. Hence the same table givesalso the elements
of the point G, by entering with the argument “azimuth,” ex-
pressed in time, instead of the hour angle. We then have (=
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If 3 is but little less than ¢, the star will be near the zenith,
and, as in the preceding article, we shall obtain a more accurate
solution as follows:

Put
k = y/[sin (¢ + 9) sin (¢ — )]
then
sm ¢t — —k—— sin{ = cosq =—k— (26)
sin ¢ cos & sin ¢ cosd

‘We may also deduce the following convenient and accurate
formule for the case where the star’s declination is nearly equal
to the latitude [see Sph. Trig. Arts. 60, 61, 62]:

sin (¢ — 9)
tan 9 t = J(m)
— _[(tand (p—9) @n
tan# ¢ \/(tan}(go—{-a)) :
tan (45° — § ¢) = 1/[tan 4 (¢ + 9) tan & (p — 9)]
If 3 > ¢, these values become imaginary; that is, the star can-
not cross the prime vertical.

ExampLE.—Required the hour angle and zenith distance of the
star 12 Canum Venaticorum (8 = + 39° 5’ 20”’) when on the prime
vertical of Cincinnati (¢ = + 89° 5’ 54”).

p—3= 0°0 34" (p—3= 0017
p+d= 781114 t(p—8)= 395837
log sin (¢ — &) 6.21705 log tan ¢ (¢ — &) 5.91602
log sin (¢ 4 9) 9.99070 log tan § (¢ + &) 9.90982
2)6.22635 2)6.00620
log tan ¥ ¢ 8.11318 log tan $ ¢ 8.00310
3t =0°4436"6 3L =0°3437"3
t=1°29"13".2 {=1° 914”6

= 0* 5~ 56-.88

/70. To find the amplitude and hour angle of a given star when in
he horizon.—If the star is at H, Fig. 1, we have in the triangle
PHN, right-angled at N, PN = ¢, HPN = 180° — {, PH =
90° — d; and if the amplitude WH is denoted by a, we have
HN = 90° — a. This triangle gives, therefore,

sin a = sec ¢ 8in & } (28)
cost — — tan ¢ tan &



SPHERICAL .CO-ORDINATES. 39

21. Given the hour angle (t) of a star, to find its right ascension ().
—Transformation from our second system of co-ordinates to the
third.

There must evidently be given also the position of the meridian
with reference to the origin of right ascensions. Suppose then
in Fig. 1 we know the right ascension of the meridian, or V@
=0, then we have VD = VQ —DQ, that is,

a=0 —1t
Conversely, if @ and © are known, we have
t=0 —a

The methods of finding © at a given time will be considered
hereafter.

22. Ghven the zenith distance of a known star at a given place, to
Jind the star’s hour angle, azimuth, and parallactic angle.

In this case there are given in the triangle POZ, Fig. 1, the
three sides ZO = ¢, POP = 90° — 8, PZ = 90° — ¢, to find
the angles ZPO =1, PZ0O =180° — 4, and POZ=gq. The
formula for computing an angle B of a spherical triangle ABC, -
whose sides are a, b, ¢, i8 either

sin*B:\/(sin(s—a)sin(s—c))

8in a sin ¢

cos i B =\/ ("_i'l_s.'ii“_@;@)

sin a sin ¢

or tan*B___\/(sin(s——a)sin(s—c))

sin 8 sin (s — b)

in whichs =14 (@ + & 4+ ¢). We have then only to suppose B
to represent one of the angles of our astronomical triangle, and
to substitute the above corresponding values of the sides, to ob-
tain the required solution.

This substitution will be carried out hereafter in those cases
where the problem is practically applied.

23. Given the declination (6) and the right ascension (&) of a star,
and the obliquity of the ecliptic (¢), to find the latitude (3) and the longi-
tude (2) of the star.—Transformation from the third system of co-
ordinates to the fourth.

The solution of this problem is similar to that of Art. 10.
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The analogy of the two will be more apparent if we here repre-

Fig. 6.

ol

sent the sphere projected on the plane of
the equator as in Fig. 6, where VBUC is
the equator, P its pole; VAU the ecliptic,
P’ its pole, and consequently CP’PB the
solstitial colure; POD, P’OL, circles of
U declination and latitude drawn through the
star 0. Since the angle which two great
circles make with each other is equal to
the angular distance of their poles, we have

PP’ =¢; and since the angle P'PO is
measured by CD and PP’O by AL, we have in the triangle

PP'O

P'PO, PP'O, P'0, PO,
90° +a, 90°—2 90°—g 90° —3,

which, substituted respectively for
A, B a, b,
in the general equations (&), Art. 10, give

sin 8 = cos8 ¢ 8in 3 — 8in ¢ co8 & 8in a
cos 8 8in A = sin ¢ 8in & 4 08 ¢ co8 & 8in a
cos S cos A = 08 8 CO8 a

which are the required formule of transformation.

for logarithmic computation, we have

m sin M —sin 8
m cos M — cos 3 8in a
8in § = m sin (M — )
cos 8 8in A = m cos (M — )
cos f co8S8A = cos 3 co8a

in which m is a positive number.

PP’

[ 4

)
} (29)
Adapting
(80)

A still more convenient form is obtained by substituting

m K — cos 3

k= Goss m

by which we find
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ksin M = tan ¢

k cos M — 8in a

Ksin 2 = cos (M —¢)

K cos A = cos M cot a (31)
tan g = sin 4 tan (M —¢)

cos Ssind __ cos (M —e)
cos dsina cos M

For verification :

ExampLE.—Given 8, a, and ¢ as below, to find 3 and . Com-
putation by (31).

3= —16°22'35".45 logsin 1 n8.0897286

a= 6 33 29 .30 logtan (M —¢) 1.4114658

e= 23 27 31.72 logtanp n9.5011944

log tan 8 = log k sin M n9.4681562 A= — 17° 3% 87".51
log sin @ =log k cos M  9.0577093

= — 68° 45" 41".87 Verification.
M—e=—92 13 13 .59 log cos 8 s8in 2 n8.0689234
log cos 4 sin a  9.0397224

log cos M 9.5590070 cos (M—¢
1o§ cota 00391396 8 _c(osT[ ) n9 0202010
log ¥ cos 2 0.4984466
logcos (M —¢) =1log ¥ sin 1 n8.5882080
A = 859° 17’ 43".91

Tables for facilitating the above transformation, based upon
the same method as that employed in Art. 16, are given in the
American Ephemeris and Berlin Jahrbuch. The formulse there
used may be obtained from Fig. 6, in which the points Fand G
are used precisely as in Fig. 4 of Art. 16.

24. If we denote the angle at the star, or P’OP, by 90° — E,
the solution of the preceding problem by Gauss’s Equations is

cos (45° — 3 8)sin } (E+4-A)=sin[45° —} (¢ —3&)]sin (45° 4} a)
cos(45° —4 B)cost (B4 A)=cos[45° — (¢ + 8)] cos (45° + % a) (32)
sin (45° —} 3)sin § (E—2)=sin [45° —} (¢ 4-8)] cos (45° +- % a)
sin (45° — 1 3) cos § (E—A)=cos[45° — } (¢ —3)]sin (45°4- } a)

25. If the angle at the star is required when the Gaussian
Equations have not been employed, we have from the triangle
POP!, Fig. 6, putting P'OP = 5 = 90° — E,
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(OS 5C087% —Cose0sé 4 Binesindsine
©os 35in 5, — 6D £ cUS @

or, adipted for logarithms,

asin N—==¢cinecsine
Rc0s N =cose
o5 Scosy = k cos (N —23)
©0ns 3008 7, — sin £ ¢cOs a

(33

26. Giren the latitude (3) and longitude (i) of a star, and the
obdiuity of the ecliptic (€), to find the declination and right ascenzion
of the stur.

By the process already employed, we derive from the triangle
PP’0, Fig. 6, for this case,

sin 8 = cosesin 3 1 sin e co8 3sin i
€03 3 8in @ == —sin e sin 3 4 oS € cos 5 sin 4 (3
COs 8 cO8 a — cos 3 cos

which, it will be observed, may be obtained from (29) by inter-
changing a with 4, and é with 3, and at the same time changing
the sign of ¢, that is, putting — ¢ for ¢, and, consequently, —&in ¢
for gin e.

For logarithmic computation, we have

m cos M — cos 3 sin A
sin 8 = m sin (M + ¢)
cos8 3 8in a — m cos (M + ¢)

€08 8 COS a — €O0s 3 cos 4

m sin M — sin 3 )

(3%)

or the following, analogous to (31):

k sin M = tan 3
k cos M —sin i
K sin @ = cos (M 4 €)
K cos a = cos M cot A
36
tan & = sin a tan (M 4 ¢) 0

cos 3 8in a __cos (M + ¢)
cos Fsin A cos M /

For verification :

27. The angle at the star, POP’, heing denoted, as in Art. 24,
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by 90° — E, the solution of this problem by the Gaussian
Equations is

sin (45°— 1 8) sin § (E 4 a) =sin [45°— & (s 4 )] sin (45°4-§ 1)

sin (45°— § 8) cos } (£ + a) = cos[45°— 4 (e — )] cos (45°4-} 4) 37
co8 (45°— } 3) 8in § (B — @) = cos [456°— § (¢ — B)] sin (45°+ 4 1) S
co8(45°— § 3) cos 4 (F — a) =sin [45°— } (¢ 4 §)] cos (45°4- § 2)

28. But if the angle » = 90° — FE is required when the
Gaussian Equations have not been employed, we have directly

€08 & o8 7 = co8 ¢ co8 § — sin ¢ s8in §sin 4
cos 4 8in 7 = sin ¢ co8 4

or, adapted for logarithms,

n 8in N= gin ¢ sin 1

n cos N—=cos ¢
cos & cos 3 = n cos (IV 4 ) (38)
cos & 8in » = sin ¢ cos 4

29. For the sun, we may, except when extreme precision is
desired, put 2 = 0, and the preceding formule then assume very
simple forms. Thus, if in (34) we put sin 3 =0, cos 3 =1, we
find

sin 3 = sin ¢ sin 2
cos & sin @ =— cos ¢ 8in 4
co8 & cos a = co8 4

whence if any two of the four quantities d, a, 2, € are given, we
can deduce the other two.

RECTANGULAR CO-ORDINATES.

30. By means of spherical co-ordinates we have expressed
only a star’s direction. To define its position in space com-
pletely, another element is necessary, namely, its distance. In
Spherical Astronomy we consider this element of distance only
so far as may be necessary in determining the changes of
apparent direction of a star resulting from a change in the point
from which it is viewed. For this purpose the rectangular co-
ordinates of analytical geometry may be employed.

Three planes of reference arc taken at right angles to each
other, their common intersection, or origin, being the point of
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For, let AB, Fig. 7, be the given great circle orthographi-
cally projected upon a plane passing through its axis OP and
the given point C; P its pole. The dis- Fig. 7.
tance of the point C from the plane of the 4
- great circle is the perpendicular CD; CE

is its distance from the axis; CO its dis- iV
tance from the centre of the sphere; and o p
the angle COP the angular distance from - ’
the pole. The truth of the Lemma is,
therefore, obvious from the figure.

B

82. The values of the rectangular co-ordinates in our several
systems may be found as follows:

First system.— Allitude and azimuth.—Let the primitive plane,
or that of the horizon, be the plane of zy; that of the meridian,
the plane of rz; that of the prime vertical, the plane of yz.
The meridian line is then the axis of z; the east and west line,
the axis of y; and the vertical line, the axis of 2. Positive z
will be reckoned from the origin towards the south, positive y
towards the west, and positive z towards the zenith. The first
angle, or angle of positive values, is therefore the southwest
quarter of the hemisphere above the plane of the horizon. Let
Z, Fig. 8, be the zenith, S the south point, W the Fig. 8.
west point of the horizon. These points are -
respectively the poles of the three great circles z
of reference; if, then, 4 is the position of a
star on the surface of the sphere as seen from
the centre of the earth, and if we put

h = altitude of the star = AH,
4 = azimuth “ = SH,
4 = its distance from the centre of the sphere

we have immediately, by the preceding Lemma,
xr =24 cos AS, y=4dcos AW, z= 24 cos AZ,
which, by considering the right triangles A HS, AH W, become
x=4dcoshcos A
y=4dcoshsin 4 } (39)
zZ=24dsinh

These equations determine the rectangular co-ordinates z, , 2,
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The axis of x is the intersection of the planes of the equator
and equinoctial colure, positive towards the vernal equinox; the
axis of y is the intersection of the planes of the equator and sol-
stitial colure, positive towards that point whose right ascension
is 490°; and the axis of z is the axis of the equator, positive
towards the north. If then,in Fig. 8, Z is the north pole, W
the vernal equinox, 4 a star in the first angle, projected upon
the celestial sphere, and we put

8 = declination of the star = AH,
a = right ascension « = WH,
4 = distance from the centro,

while z’’, y"/, 2!’ denote the rectangular co-ordinates, we have

2= dcos AW, yY'=d4dcos AS, 2Z'=dcos AZ,

2" = 4 cos 8 cos a
Yy’ = 4 cos 8 8in a } “n

2’ = 4sin &

which become

Fourth system.— Celestial latitude and longitude.—Let the plane
of the ecliptic be the plane of zy; the plane of the circle of
latitude passing through the equinoctial points, the plane of zz ;
the plane of the circle of latitude passing through the solstitial
points, the plane of yz. The positive axis of x is here also the
straight line from the centre towards the vernal equinox; the
positive axis of y is the straight line from the centre towards the
north solstitial point, or that whose longitude is +90°; and the
positive axis of 2 is the straight line from the centre towards
the north pole of the ecliptic.

If then, in Fig. 8, Z now denotes the north pole of the ecliptic,
W the vernal equinox, 4 the star’s place on the sphere, and
we put

f = latitude of the star = AH,
A = longitude of the star = WH,
4 = distance of the star from the centro,

and z'’, y'"’, 2/", denote the rectangular co-ordinates for this
system, we have

2" = 4 cos S cos A

Yy = d cos 3sin A } 42)

2" = dsin 8
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TRANSFORMATION OF RECTANGULAR CO-ORDINATES.

33. For the purposes of Spherical Astronomy, only the most
simple cases of the general transformations treated of in analy-
tical geometry are necessary. We mostly consider but two cases:

First. Transformation of rectangular co-ordinates to a new origin,
without changing the system of spherical co-ordinales.

The general planes of reference which have been used in this
chapter may be supposed to be drawn through any point in space
without changing their directions, and therefore without changing
the great circles of the infinite celestial sphere which repre-
sent them. We thus repeat the same system of spherical co-ordi-
nates with various origins and different systems of rectangular
co-ordinates, the planes. of reference, however, remaining always
parallel to the planes of the primitive system.

The transformation from one system of rectangular co-ordi-
nates to a parallel system is evidently effected by the formule

a:,—_—x,-[-a ’ .
Y=y, +0 ' } 43)
2, =z,+¢ .

in which z,, 9, 2, are the co-ordinates of a point in the primitive
system ; ¥y, ¥, 2, the co-ordinates of the same point in the new
system ; and a, b, ¢ are the co-ordinates of the new origin taken
in the first system.

As we have shown how to express the values of z,, y,, 2, and
of z,, ¥, 2, in terms of the spherical co-ordinates, we have only
to substitute these values in the preceding formulse to obtain the
general relations between the spherical co-ordinates correspond-
ing to the two origins. This is, indeed, the most general method
of determining the effect of parallaz, as will appear hereafter.

Fig. 9. Second. Transformation of rectangular co-

z z ordinates when the system of spherical co-ordi-

Bé “nales is changed but the origin is unchanged.
Bi—p—=4  This amounts to changing the directions of
~—__ the axes. The cases which occur in practice

0 \“" are chiefly those in which the two systems
' have one plane in common. Suppose this
plane is that of zz, and let 0.X, OZ, Fig. 9, be
the axes of z and z in the first system; OX,,
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cos h cos A = sin ¢ cos 3 cos t — cos 9" sin &
cos h 8in A—=cos dsin ¢
sin A =cos ¢ cos & cos ¢ 4-8in ¢ 8in 3

which agree with (14). We see that when the element of dis-
tance is left out of view (as it must necessarily be when the
origin is not changed), the transformation by means of rectangu-
lar co-ordinates leads to the same forms as the direct application
of Spherical Trigonometry. With regard to the entire generality
of these formule in their application to angles of all possible
magnitudes, see Sph. Trig. Chap. IV.

DIFFERENTIAL VARIATIONS OF CO-ORDINATES.

34. It is often necessary in practical astronomy to determine
what effect given variations of the data will produce in the quan-
tities computed from them. Where the formule of computa-
tion are derived directly from a spherical triangle, we can employ
for this purpose the equations of finite differences [Sph. Trig.
Chap. V1.] if we wish to obtain rigorously exact relations, or
the simpler differential equations if the variations considered
are extremely small. As the latter case is very frequent, I shall
deduce here the most useful differential formule, assuming as
well known the fundamental ones [Sph. Trig. Art. 153],

da — cos C db — cos B dc — &in b sin C dA
—cosC da 4+ db — cos A d¢ = sin ¢ sin A dB (46)
—cos Bda — cos Adb 4 de = 8in a sin B dC

From these we obtain the following by eliminating da:

sin C db — cos  sin B dc — sin b cos C dA -+ sin a dB }(47)
—cos a sin C db 4 sin B d¢c =sin ¢ cos B dA 4 sin a dC

and by eliminating db from these:
sin a sin B d¢ = cos b dA + cos a dB 4 dC 48)
If we eliminate dA from (47), we find
cos b sin C db — cos ¢ sin B d¢ = sin ¢ cos B dB — sin b sin C dC

the terms of which being divided either by sin b sin C, or by its
equivalent sin ¢ sin B, we obtain

_cot b db — cot ¢ de = cot BdB — cot C dC (49)
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35. As an example, take the spherical triangle formed by the
zenith, the pole, and a star, Art. 10, and put

A=180°— 4 a=290°—2¢
B=t b=¢
C=q c=90°—¢

then the first equations of (46) and (47) give
dé = — cos ¢ d% + singsin{ d4d 4 cost de } (50)
cosddt =— sin gdf 4 cosgsin{ d4 4 sindsint de
which determine the errors dé and dt¢ in the values of & and ¢
computed according to the formule (4), (5), and (6), when ¢, 4,
and ¢ are affected by the small errors df, d4, and dy respectively.
In a similar manner we obtain
d? = — co8 ¢ dé }- 8in g cos & dt + cos Ady } (1)
gin{dA=  sin ¢ d3 4 cos ¢ cos & dt — cos { sin Adyp
which determine the errors dZ and dA in the values of £ and 4
computed by (14), when &, {, and ¢ are affected by the small
errors dd, dt, and dgp respectively.

86. As a second example, take the triangle formed by the pole
of the equator, the pole of the ecliptic, and a star, Art. 23. De-
noting the angle at the star by », we find

df = cos n dé — sin 5 cos & da — sin A de } (52)
cos 8 dA = sin y dé +- cos 3 cos & da - sin 3 cos A de -

and reciprocally,

dd = co8 ydj3 -} sin  cos B di 4 sin a de
co8 8 da — — sin 5 d3 + cos 5 cos 8 dA — sin & cos ads

} 6
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CHAPTER IL

TIME—USE OF THE EPHEMERIS—INTERPOLATION—STAR
CATALOGUES.

37. TransiT.—The instant when any point of the celestial
sphere is on the meridian of an observer is designated as the
transit of that point over the meridian; also the meridian passage,
and culmination. In one complete revolution of the sphere
about its axis, every point of it is twice on the meridian, at
points which are 180° distant in right ascension. It is therefore
necessary to distinguish between the two transits. The meri-
dian is bisected at the poles of the equator: the transit over that
half of the meridian which contains the observer’s zenith is the
upper transit, or culmination; that over the half of the meri-
dian which contains the nadir is the lower transit, or culmina-
tion. At the upper transit of a point its hour angle is zero, or
0*; at the lower transit, its hour angle is 12*.

38. The motion of the earth about its axis is perfectly uni-
form. If, then, the axis of the earth preserved precisely the
same direction in space, the apparent diurnal motion of the
celestial sphere would also be perfectly uniform, and the inter-
vals between the successive transits of any assumed point of the
sphere would be perfectly equal. The effect of changes in the
position of the earth’s axis upon the transit of stars is most per-
ceptible in the case of stars near the vanishing points of the
axis, that is, near the poles of the heavens. We obtain a measure
of time sensibly uniform by employing the successive transits of
a point of the equator. The point most naturally indicated is
the vernal equinox (also called the First point of Aries, and de-
noted by the symbol for Aries, 7).

89. A sidereal day is the interval of time between two succes-
sive (upper) transits of the true vernal equinox over the same
meridian.

The effect of precession and nutation upon the time of transit
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of the vernal equinox is 8o nearly the same at two successive
transits, that sidereal days thus defined are sensibly equal. (See
Chapter XI. Art. 411.)

The sidereal time at any instant is the hour angle of the vernal
equinox at that instant, reckoned from the meridian westward
from 0* to 24*. :

‘When o is on the meridian, the sidereal time is 0* 0™ 0*; and
this instant is sometimes called sidereal noon.

40. A solar day is the interval of time between two successive
upper transits of the sun over the same meridian.

The solar time at any instant is the hour angle of the sun at
that instant.

In consequence of the earth’s motion about the sun from west
to east, the sun appears to have a like motion among the stars,
or to be constantly increasing its right ascension; and hence a
solar day is longer than a sidereal day.

41. Apparent and mean solar time.—If the sun changed its right
ascension uniformly, solar days, though not equal to sidereal days,
would still be equal to each other. But the sun’s motion in right
ascension is not uniform, and this for twe reasons:

1st. The sun does not move in the equator, but in the ecliptic,
so that, even were the sun’s motion in the ecliptic uniform, its
equal changes of longitude would not produce equal changes of
right ascension; 2d. The sun’s motion in the ecliptic is not uni-
form.

To obtamn a uniform measure of time depending on the sun’s
motion, the following method is adopted. A fictitious sun, which
we shall call the first mean sun, is supposed to move uniformly at
such a rate as to return to the perigee at the same time with the
true sun. Another fictitious sun, which we shall call the second
mean sun (and which is often called simply the mean sun), is sup-
posed to move uniformly in the equator at the same rate as the
first mean sun in the ecliptic, and to return to the vernal equinox
at the same time with it. Then the time denoted by this second
mean sun is perfectly uniform in its increase, and is called mean time.

The time which is denoted by the true sun is called the true
or, more commonly, the apparent time.

The instant of trausit of the true sun is called apparent noon, and
the instant of transit of the second mean sun is called mean noon.
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45. Time at different meridians.—The hour angle of the sun at
any meridian is called the local (solar) time at that meridian.

The hour angle of the sun at the Greenwich meridian at the
same instant is the corresponding Greenwich time. This time we
shall have constant occasion to use, both because longitudes
in this country and England are reckoned from the Greenwich
meridian, and because the American and British Nautical
Almanacs are computed for Greenwich time.*

The difference between the local time at any meridian and the
Greenwich time is equal to the longitude of that meridian from
Greenwich, expressed in time, observing that 1* =15°.

The difterence between the local times of any two  Fig. 10.
meridians is equal to the difference of longitude of
those meridians.

In comparing the corresponding times at two dif-
ferent meridians, the most easterly meridian may be
distinguished as that at which the time is greatest;
that is, latest.

If then PM, Fig. 10, is any meridian (referred to the celestial
sphere), PG the Greenwich meridian, PS the declination circle
through the sun, and if we put

S MG N

T, = tho Greenwich time = G'PS,
T = tho local time = MPS,
L = the west longitude of the meridian PM — G PM,
we have
L=T,—T
LT 11 )

If the given meridian were east of Greenwich, as PM’, we
should have its east longitude=T— T,; but we prefer to use
the general formula L= T,— T in all cases, observing that east
longitudes are to be regarded as negative.

In the formula (54), T, and T are supposed to be reckoned
always westward from their respective meridians, and from 0* to
24*; that is, 7 and T are the astronomical times, which should, of
course, be used in all astronomical computations.

As in almost every computation of practical astronomy we are
dependent for some of the data upon the ephemeris,—and these

* What we have to say respecting the Greenwich time is, however, equally appli-
cable to the time at any other meridian for which the ephemeris may be computed.
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are commonly given for Greenwich,—it is generally the first step
in such a computation to deduce an exact or, at least, an ap-
proximate value of the Greenwich astronomical time. It need
hardly be added that the Greenwich time should never be other-
wise expressed than astronomically.*

ExAMPLES.

1. In Longitude 76° 82’ W. the local time is 1856 April 1,
9 3= 10" A.M.; what is the Greenwich time ?

Local Ast. T. March 81, 21* 3= 10
Longitude + 5 6 8

Greenwich T. Aprill, 2 9 18

2. In Long. 105° 15’ E. the local time is August 21, 4* 3 P.M;
what is the Greenwich time ?

Local Ast. T. Aug. 21, 4* 3=
Longitude — 7 1

Greenwich T. Aug. 20, 21 2

3. Long. 175° 30’ W. Loc. T. Sept. 30, 8 10~ A M.=G. T.
Sept. 30, 7* 52™.

4. Long 165° 0’ E. Loc. T. Feb. 1, 7 11* P.M. =G. T. Jan.
31, 20* 11

5. Long. 100° 81’ E. Loc. T. June 1, 0* M. (Noon) = G. T. May
31, 19* 42~ /f b st

46. In nautical practice the observer is provided with a chro-
nometer which is regulated to Greenwich time, before sailing,
at a place whose longitude is well known. Its error on Green-
wich time is carefully determined, as well as its daily gain or
loss, that is, its rafe, so that at any subsequent time the Green-
wich time may be known from the indication of the chronometer
corrected for its error and the accumulated rate since the date
of sailing. As, however, the chronometer has usually only 12*
marked on the dial, it is necessary to distinguish whether it
indicates A.M. or P.M. at Greenwich. This is always readily
done by means of the observer’s approzximate longitude and local

* On this account, chronometers intended for nautical and astronomical purposes
should always be marked from O* to 24%, instead of from C* to 12* as is now usual.
It is surprising that navigators have not insisted upon this point.
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in which Z is to be regarded as a positive quantity when it is
additive to apparent time. The value of E is to be taken from the
Nautical Almanac for the Greenwich instant corresponding to
the given local time. If apparent time is given, find the Gr.
apparent time and take E from page I of the month in the
Nautical Almanac; if mean time is given, find the Gr. mean
time and take E from page II of the month.

ExampLE 1.—In longitude 60° W., 1856 May 24, 3* 12~ 10*
P.M., apparent time ; what is the mean time ?
‘We have first
Local time May 24,  3*12=10*
Longitude, 4 0 0
Gr. app. time May 24, 7 12 10

We must, therefore, find E for the Gr. time, May 24, T* 12
107, or 7.21. By the Nautical Almanac for 1856, we have F at
apparent Greenwich noon May 24 = — 3= 25'.43, and the hourly
difference + 0~.224. Ilence at the given time

E=—3=25'43 4 0224 X 7.21 = — 3= 2381

and the required mean time is
M= 3*12=~ 10* — 3= 23:.81 — 3* 8= 46°.19.

ExaupLE 2.—In longitude 60° W., 1856 May 24, 3* 8= 4619
mean time ; what is the apparent time ?

Gr. mean time, May 24, 7* 8= 46°.19 (= 7>.15)

E at mean noon May 24 = — 3= 2541 Hourly diff. =0°.224
Correction for 7215 = + 1.60 7.15
E—=— 3 2381 1.60
and hence

M—=3 8= 46119
—E—=4 3 2381
A=3 12 10 .00

As the equation of time is not a uniformly varying quantity, it
i8 not quite accurate to compute its correction as above, by mul-
tiplying the given hourly difference by the number of hours in
the Greenwich time, for that process assumes that this hourly
difference is the same for each hour. The variations in the
hourly difference are, however, so small that it is only when
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extreme precision is required that recourse must be had to the
more exact method of interpolation which will be given here-
after.

49. To determine the relative length of the solar and sidereal units
of lime.

According to BEssEiL, the length of the tropical year (which is
the interval between two successive passages of the sun through
the mean vernal equinox) is 865.24222 mean solar days;* and
since in this time the mean sun has described the whole arc of
the equator included between the two positions of the equinox,
it has made one transit less over any given meridian than the
vernal equinox; so that we have

866.24222 sidcreal days — 365.24222 mean solar days

whence we dedute

365.24222
1 sid. day = ————— sol. day = 0.99726957 sol. d
sid. day 36621222 sol a?i 0.997 7 sol. day
or .
24* sid. time — 23* 56= 4°.091 solar time
Also,
366.24222 . .
1 sol. day = 36521552 sid. day = 1.00273791 sid. day
or
24* sol. time = 24* 3= 56°.556 sid. time-
If we put

36624222
*= 365.24222

and denote by I an interval of mean solar time, by I’ the equiva-
lent interval of sidereal time, we always have

I'=pl =TI+ (u—1)T =I+.00273791 I
} (55)

= 1.00273791

“+

1= —r—q-r=r—ommsusr
Tables are given in the Nautical Almanacs to save the labor of
computing these equations. In some of these tables, for each
solar interval I there is given the equivalent sidereal interval
I' = ulI, and reciprocally: in others there are given the correc-
tion to be added to Ito find I’ (i.e. the correction .00278791 I),

* The length of the tropical year is not absolutely constant. The value given in
the text is for the year 1800. Its decrease in 100 years is about 0.8 (Art. 407).

-----
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and the correction to be subtracted from I’ to find I (i.e. the
correction .00273043 I’). The latter form is the most conve-
nient, and is adopted in the American Ephemeris. The correction
(2 —1) I is frequently called the acceleration of the fixed stars (re-
latively to the sun). The daily acceleration is 3™ 56°.555.

50. To convert the mean solar time at a given meridian into the
corresponding sidereal time.
In Fig. 1, page 25, if PQ is the given meridian, V@ the equator,
D the mean sun, V the vernal equinox, and if we put
TI'= D@ = the mean solar time,
O = V' Q = the sidereal time,
= the right ascension of the meridian,
¥V = the right ascension of the mean sun,

0=T+7V (56)

we have

The right ascension of the mean sun, or V| is given in the
American Ephemeris, on page II of the month, for each Green-
wich mean noon. It is, however, there called the ¢ Sidereal
Time,” because at mean noon the second mean sun is on the
meridian, and its right ascension is also the right ascension of
the meridian, or the sidereal time. But this quantity V is uni-
formly increasing* at the rate of 3™ 56'.555 in 24 mean solar
hours, or of 9.8565 in one mean hour. To find its value at the
given time 7, we may first find the Greenwich mean time 7} by
applying the longitude; then, if we put

V, = the valuc of ¥ at Gr. mean noon,
= the “sidereal time” in the ephemeris for the given date,

we have
V="V,4 9.8565 X T,

in which 7, must be expressed in hours and decimal parts. It
is easily seen that 9.8565 is the acceleration of sidereal time on
solar time in one solar hour, and therefore the term 9.8565 X T
is the correction to add to 7, to reduce it from a solar to a side-
real interval. This term is identical with (x —1)7; as given by

* The sidereal time at mean noon is equal to the true R.A. of the mean sun, or it
is the R.A. of the mean sun referred to the true equinox, and therefore involves the
nutation, so that its rate of increase is not, strictly, uniform. But it is sufficiently so
for 24 hours to be so regarded in all practical computations. See Chapter XI.
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equinox, and is merely the difference between 24* and the mean
sun’s right ascension. The hour aungle of the mean sun at any
instant is then the hour angle of the vernal equinox increased
by the value of V’ at that instant. To find this value of V’, we
first reduce the Almanac value to the given meridian by cor-
recting it for the longitude by the table for converting sidereal
into mean time; then reduce it to the given sidereal time ©
(which is the elapsed sidereal time since the transit of the vernal
equinox over the given meridian) by further correcting it by the
same table for this time ©. We then have the mean time 7' by
the formula
T—0 4V

It is necessary to observe, however, that if © + V'’ exceed
24* it will increase our date by one day; and in that case V'
should be taken from the Almanac for a date one day less than
the given date; that is, we must in every case take that value
which belongs to the Greenwich trausit of the vernal equinox
immediately preceding that over the given meridian.

ExaMpPLE.—Same as in Art. 52.

O —=19* 41~ 57°.89

May 15, ¥/ =20 23 3 .88

Corr. for long. 11* W. = —1 48.13
Corr. for 19* 41~ 568 = —3 13.64

T=16 0 0.00

54. To find the hour angle of a star* at a given time al a given
meridian.
In Fig. 1, we have for the star at O, DQ = V@ — VD; that
is, if we put
O = tho sidercal time,

a = the right ascension of the star,
t = the hour angle w o«

then t1=0 —a (59)
If a exceeds O, this formula will give a negative value of ¢

which will express the hour angle east of the meridian: in that
case, if we increase © by 24 before subtracting a, we shall find

* We shall use “star,” for brevity, to denote any celestial body.
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t= 4*10=53.2

For Aug. 10,9*22= o =16 29 26.8
© =20 40 20.0

‘ “ V= 918 81

2d approx. value T =11 22 11.9

A third approximation, setting out from this value of 7, gives
us T = 11* 22~ 12°.32.

56. The mean time of the meridian passage not only of the
moon but of each of the planets is given in the Ephemeris.
This quantity is nothing more than the arc of the equator in-
tercepted between the mean sun and the moon’s or planet’s
declination circle. If we denote it by M, we may regard M as
the equation between mean time and the lunar or planetary time,
these terms being used instead of ‘hour angle of the moon” or
“hour angle of a planet,” just as we use “solar time” to signify
“hour angle of the sun.” This quantity M is given in the Ephe-
meris for the instant when the lunar or planetary time is 0% and
its variation in 1* of such time is also given in the adjacent
column. If| then, when the moon’s or a planet’s hour angle at a
given meridian = ¢, we take out from the Almanac the value of
M for the corresponding Greenwich value of ¢ we shall find the
mean time 7' by simply adding M to ¢; that is,

T—=t+M (61)

This is, in fact, the direct solution of the problem of the pre-
ceding article, and neither requires a previous knowledge of the
Greenwich mean time nor introduces the sidereal time. But
the Almanac values of M are not given to seconds; and there-
fore we can use (61) only for making our first approximation to
T, after which we proceed as in the last article. The Green-
wich value of ¢ with which we take out M is equal to ¢ + L,
denoting by L the longitude of the given meridian (to be taken
with the negative sign when cast), and the required value of M is
the Almanac value increased by the hourly diff. multiplied by
(t+ L) in hours. As the hourly diff. of M in the case of the moon
is itself variable, we should use that value of it which corresponds
to the middle of the interval t + L ; that is, we should first correct
the hourly diff. by the product of its hourly change into } ({+ L)
in hours.
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ExaMpLE.—Same as Example 3, Art. 55. We have

t + L =2*10" 53.2 = 2418 t= 4*10~53"2
AtGr.trans. Hour. Diff. =2".17 AtGr.trans. Aug.10,M= 7 6 30
Variationof H.D.in1*5~ = .01 2~.18 x 2.18 = 4 4 45
Corrected Hourly Diff. =2 .18 T=1122 8.2

which agrees within 4 with the true value. Taking it as a first
approximation, and procceding as in Art. 55, a second approxima-
tion gives T'= 11* 22~ 12-.19.

THE EPHEMERIS, OR NAUTICAL ALMANAC.

57. We have already had occasion to refer to the Ephemeris;
but we propose here to treat more particularly of its arrange-
ment and use. )

The Astronomical Ephemeris expresses in numbers the actual
state of the celestial sphere at given instants of time; that is,
it gives for such instants the numerical values of the co-ordi-
nates of the principal celestial bodies, referred to circles whose
positions are independent of the diurnal motion of the earth,
as declination and right ascension, latitude and longitude;
together with the elements of position of the circles of re-
ference themselves. It also gives the eftects of changes of posi-
tion of the observer ‘upon the co-ordinates, or, rather, numbers
from which such changes can be readily computed (namely,
the parallax, which will be fully considered hereafter), the ap-
parent angular magnitude of the sun, moon, and planets, and,
in general, all those phenomena which depend on the time; that
is, which may be regarded simply as functions of the time.

The American Ephemeris is composed of two parts, the first
computed for the meridian of Greenwich, in conformity with the
British Nautical Almanae, especially for the use of navigators;
the second computed for the meridian of Washington for the
convenience of American astronomers. The French Ephemeris,
La Connaissance des Temps, is computed for the meridian of Paris;
the German, Berliner Astronomisches Jahrbuch, for the meridian
of Berlin. All these works are published annually several years
in advance.

58. In what follows, we assume the Ephemeris to be computed
for the Greenwich meridian, and, consequently, that it contains
the right ascensions, declinations, equation of time, &c. for given
equidistant instants of Greenwich time. '
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Before we can find from it the values of any of these quanti-
ties for a given local time, e must find the corresponding Green-
wich time (Arts. 45, 46). When this time is exactly one of the
instants for which the required guantity is put down in the Ephe-
meris, nothing more is necessary than to transcribe the quantity
as there put down. But when, as is mostly the case, the time
falls between two of the times in the Ephemeris, we must obtain
the required quantity by interpolation. To facilitate this inter-
polation, the Ephemeris contains the rate of change, or difference
of each of the quantities in some unit of time.

To use the difference columns with advantage, the Greenwich
time should be expressed in that unit of time for which the
difference is giv en: thus, when the difference is for one hour,
our time must be expressed in hours and decimal parts of an
hour; when the difference is for one minute, the time should be
expressed in minutes and decimal parts, &c.

59. Simple interpolation.—In the greater number of cases in
practice, it is sufliciently exact to obtain the required quantities
by simple interpolation; that is, by assuming that the differences
of the quantities are proportional to the differences of the times,
which is equivalent to assuming that the differences given in the
Ephemeris arc constant. This, however, is never the case; but
the error arising from the assumption will be smaller the less
the interval between the times in the Ephemeris; hence, those
quantities which vary most irregularly, as the moon’s right
ascension and declination, are given for every hour of Green-
wich time ; others, as the moon’s parallax and semidiameter, for
every twelfth hour, or for noon and midnight; others, as the
sun’s right ascension, &c., for each noon; others, as the right
ascensions and declinations of the fixed stars, for every tenth day
of the year. Thus, for example, the greatest errors in the right
ascensions and declinations found from the American Ephe-
neris by simple interpolation are necarly as follows :—

Error in R. A, Error in Decl.
Sun 0.1 3".5
Moon 0.1 1.5

Jupiter 01 0.6
Mars 0.4 2 4
Venus 0.2 5 4
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To illustrate'simple interpolation when the Greenwich time is
given, we add the following

ExAMPLES.

For the Greenwich mean time 1856 March 30, 17* 11~ 12,
find the following quantities from the American Ephemeris:
the Equation of time, the Right Ascension, Declination, Hori-
zontal Parallax, and Semidiameter of the Sun, the Moon, and
Jupiter. '

1. The Equation of time—The Gr. T. = March 30, 17*11=.2 — March
30, 17~.187.

(PageIT) Eat meannoon = - 4= 27-11 H.D. = — 0.763
Corr. for 17219 == — 13.11 ‘ 17.19
' E= 4+ 4 14.00 — 13.11

\.

Nore.—Observe to mark E alwi): with the sign which denotes how it is to be
applied to apparent time. If increasing, the H. D. (hourly difference) should have
the same sign as E; otherwise, the contrary sign.

2. Sun’s R. A. and Dec.

(P.IL) aat 0= 0* 36=40.78 H.D. + 9.094
Corr. for 172187 = + 2 36.29 17.187
a= 0 39 17.07 156.29

3at 0> — 4 3° 57 21”.9 H.D. 4 58".15

Corr. for 172187 — 4+ 16 39 4 17.187
=14 14 13 999.4

8. Moon’s R. A. and Dec.
aat 17" = 20* 18~ 9.80 Diff. 1= 4 2:.4975

Corr. for 112 = 27 .97 11.2
a= 20 18 37.77 27.97
dat 17» = — 25° 3' 10”.9 Diff. 1~ + 8".275
Corr. for 112 = }+ 1 32 .7 11.2
d=—25 1238 .2 92.68
4. Moorn’s Hor. Par. (= =) and Semid. (= S).
= at 120 = 58 44".1 H.D. + 2”17
Corr. for 5.2 = 4 11 3 5.2

=58 55 4 11.28
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Sat 12* = 16’ 2".0 Diff.in 12* = + 7.1
Corr. for 5*2 = +4 3 .1
S=165.1 \

5. Jupiter's R. A. and Dec.

a at 0* — 23* 29= 49°.95 H.D. 4 24175

Corr. for 17187 = + 37.38 17.187
=23 30 27.33 37.38

dat 0* = — 4° 22' 45”6 H.D. + 13".7¢4

Corr. fo* 17*187 = 4 3 56 .1 17.187
‘ d—=—1 1849 5 236.1

6. Jupiter’s Hor. Par. and Semid.—At the bottom of page 231, wo
find for the nearest date March 31, without interpolation :

==1"5 S=15"7
Note.—It may be observed that we mark hourly differences of declination plus,
when the body is moving northward, and minus when it is moving southward.

In the above we have carried the computation to the utmost
degree of precision ever necessary in simple interpolation.

60. 70 find the right ascension and declination of the sun at the time
of ils transit over a given meridian, and also the equation of time at
the same instant.

When the sun is on a meridian in west longitude, the Green-
wich apparent time is precisely equal to the longitude, that is,
the Gr. App. T. is after the noon of the same date with the local
date, by a number of hours equal to the longitude. When the
sun is on a meridian in east longitude, the Gr. App. T. is before
the noon of the same date as the local date, by a number of
hours equal to the longitude. IIence, to obtain the sun’s right
ascension and declination and the equation of time for apparent
noon at any meridian, take these quantities from the Ephemeris
(page I of the month) for Greenwich Apparent Noon of the
same date as the local date, and apply a correction equal to the
hourly difference multiplied by the number of hours in the lon-
gitude, observing to add or subfract this correction, according as
the numbers in the Ephemeris may indicate, for a time before or
after noon.
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ExaupLe 1.—Longitude 167° 81’ W. 1856 March 20, App.
Noon, find ©’s R. A., @’s Dec., and Eq. of T.
Longitude = 4 11* 10~ 4* = 4 1117
aat App. = 0*0=20-94 H.D.} 9.098

Corr. for ++ 11%17 =4 1 41.62 + 1117
a= 02 2.56 + 101.62

dat App. *= 4 0° 2'16”.5 H.D. 4 59".21

Corr. for 4 11817 =4 11 1 .4 + 1117
é=+4+01317 9 + 661.4

E at App. 0= 4 7~31.57 H.D.— 0-.759

Corr. for 4 11217 = — 8.48 + 1117
E=+4 T 23.09 — 848

ExampLE 2.—Longitude 167° 81’ E. 1856 March 20, App.
Noon, find @’s R.A., ©’s Dec., and Eq. of T.

Longitude = — 11* 10" 4*= — 11*.17
aat App. 0* = 0* 0=20°9+¢ H.D. | 9-.098

Corr. for — 11017 = — 1 41.62 — 1117

a = 23 58 39.32 — 10162

dat App. 0*= + 0° 216”5 H.D. 4+ 59".21

Corr. for — 11A17= —11 1 4 — 1117
*3=—0 844 9 — 661.4
EatApp.0*= 4+ 7=31:57 H.D. — 0-.759

Corr. for — 11017 =  + 8.48 — 17
E= 417 40.05 + 848

61. To find the mean local time of the moon’s or a planel's transit
over a given meridian.

This is the same as the problem of Art. 55, in the special case
where the hour angle of the moon or planet at the given meri-
dian is 0*. 'We can, however, obtain the required time directly
from the Ephemeris, with sufficient accuracy for many purposes,

* In this example the sun crosses the equator between the times of its transits
over the local and the Greenwich meridians. The case must be noted, as it is a fre-
quent occasion of error among navigators. The same case can occur on September
22 or 23.
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by simple interpolation. On page IV of the month (Am. Ephem.
and British Naut. Alm.) we find the mean time of transit of the
moon over the Greenwich meridian on each day. This mean
time is nothing more than the hour angle of the mean sun at
the instant, or the difference of the right ascensions of the moon
and the mean sun; and if this difference did not change, the
mean local time of moon’s transit would be the same for all
meridians; but as the moon’s right ascension increases more
rapidly than the sun’s, the moon is apparently retarded from
transit to transit. The difference between two successive times
of transit given in the Ephemeris is the retardation of the moon
in passing over 24* of longitude, and the hourly difference given
is the retardation in passing from the Greenwich meridian to
the meridian 1* from that of Greenwich. Hence, to find the
local time of the moon’s transit on a given day, take the time of
meridian passage from the Ephemeris for the same date (astro-
nomical account) and apply a correction equal to the hourly
difference multiplied by the longitude in hours; adding the
correction when the longitude is west, subtracting it when cast.
The same method applies to planets whose mean times of transit
are given in the Ephemeris as in the case of the moon.

ExampLE.—Longitude 130° 25’ E. 1856 March 22; required
local time of moon’s transit.

Gr. Merid. Passage March 22,13* 27 II.D. 4+ 159
Corr. for Long. — 8.7 = — 13.8 — 87

Local M. T. of transit — 12 48.9 — 138

62. To find the moon's or a planet’s right ascension, declination,
dc., at the time of transit over a given meridian.

Find the local time of transit by the preceding article, deduce
the Greenwich time, and take out the required quantities from
the Ephemeris for this time. This is the usual nautical method,
and is accurate enough even for the moon, as meridian observa-
tions of the moon at sea are not susceptible of great precision.
For greater precision, find the local time by Art. 55 for ¢t = 0*,
and thence the Greenwich time. See also Moon Culminations,
Chapter VIL

63. INTERPOLATION BY SECOND DIFFERENCES.—The differences
between the successive values of the quantities given in the
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L
P.L A=log %:1033* —log 4
or, if 4 is in degrees,
o
P.L. A=log% —log3°—1log 4

The angle is always supposed to be reduced to seconds; so that,
whether 4 is in seconds of time or of arc, we have

P. L. A =1log 10800 —log 4

Tables of such logarithms are given in works on Navigation.

If now we wish to interpolate a value of a lunar distance for a
time 7'+ ¢ which falls between the two times of the Ephemeris
Tand T+ 8, we are to compute the correction for the interval ¢
and apply it to the distance given for the time 7'; and if we put

4 =the difference of the distances in the Ephemeris,
4’ = the difference in the interval ¢,

we shall have, by simple interpolation,
w=4x§
on by logarithms, log 4/ =log t 4 log 4 — log 8
or, supposing 4, 4, and ¢ all reduced to seconds,
log 4/ =logt—P.L. 4 (62)
Subtracting both members of this from log 10800, we have

P.L.4=PL t4+P.L. 4 (63)

which is computed by the tables above mentioned. By (62),
however, only the common logarithmic table is required.

But the first differences of the lunar distance cannot be assumed
as constant when the intervals of time are as great as 8*. If
we put

PL 4=¢

we observe that @ is variable, and the value given in the Ephe-
meris is to be regarded as its value at the middle instant of the
interval to which it belongs. If then

@ = the value of @ for the middle of the interval ¢,
AQ = the increase of @ in 3* (found from the successive values
in the Ephemeris),
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we have

?Q,= Q—(P'53T“)AQ )

in which ¢ is in hours and decimal parts. We find then, with
regard to second differences,

log ' =logt— Q'

ExaMpLE.—Find the distance d of the moon’s centre from the
star Fomalhaut at the Greenwich time 1856 March 80, 13* 20™
24,

Here T'=12%t =1*20~ 24* = 1%.34;

Ephemeris :

™5 —4¢
3l

=0.28; and from the

March 80, 12* (d)  86°17 58" @, .2993 aQ, 4 .0041

4 —0 40 28 — 0011 28
At13°2024 d — 35 37 25 @, .2982 +.0011
logt, 3.6834
log &', 3.3852

66. To find the Greenwich time corresponding to a given lunar dis-
lance on a given day.

We find in the Ephemeris for the given day the two distances
between which the given one falls; and if 4’=difference be-
tween the first of these and the given one, 4= difference of the
distances in the Ephemeris, we find the interval ¢, to be added to
the preceding Greenwich time, by simple interpolation, from the
formula

A'
t=38" X —
XA

or
logt=log &/ +P.L.d=log & + @ (65)

and, with regard to second differences, the true interval, ¢/, by

the formula
log ¢ =log 4' + Q' (66)

where @’ has the value given in the preceding article.

But to find @’ by (64) we must first find an approximate value
of . To avoid this double computation, it is usual to find ¢ by
(65), and to give a correction to reduce it to ¢ in a small table
which is computed as follows. We have from (64), (65), and (66)
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15 —3t
86

logt’' —logt= Q' — =—( )AQ

By the theory of logarithms, we have, M being the modulus
of the common system,

logz=M[(x—1)—1}(x—1)"4 &ec.]
so that
t t—t 1/t —ty
—_ =log—=M|— ——{— .
logt' —logt Iogt [ ; 2( ; )+&c]

or, neglecting the square and higher powers of the small fraction

v —1t
logt'—logt=M(t’t—_—-—t)

t ’
This, substituted above, gives

_t(B—dt (3 —0)

e T ) 57
by which a table is readily computed giving the value of ¢ —1
[or the correction of ¢ found by (65)], with the arguments a@ and &.
In this formula ¢ and ¢ — ¢ are supposed to be expressed in hours;
and to obtain ¢ —¢ in seconds we must multiply the second
member by 3600 ; this will be effected if we multiply each of the
factors ¢ and 8* — ¢ by 60, that is, reduce them each to minutes,
so that if we substitute the value of M =.484294 the formula
becomes

80—t
P—t=—— o576 °¢ (67)

in which ¢ is expressed in minutes, and ¢ —{ in seconds.

ExaMpLE.—1856 March 80, the distance of the moon and
Fomalhaut is 85° 87/ 25/ ; what is the Greenwich time?
March 30, 12* 0= 0° (d)=36° 17’ 53" Q= 2993 AQ=-+}41
t= 120 36 d =385 37 25 log 4'=—3.3852
Ap. Gr. time =13 20 36 4 40 28 logt —3.6845
By (6T)%f—t=  —12
True Gr.time =13 20 24

* Or from the ¢ Table showing the correction required on account of the second
differences of the moon’s motion in finding the Greenwich time corresponding to &
corrected lunar distance,” which is given in the American Ephemeris, and is also
included in the Tables for Correcting Lunar Distances given in Vol. IL. of this work.
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INTERPOLATION BY DIFFERENCES OF ANY ORDER.

67. When the exact value of any quantity is required from the
Ephemeris, recourse must be had to the general interpolation
formulee which are demonstrated in analytical works. These
enable us to determine intermediate values of a function from.
tabulated values corresponding to equidistant values of the
variable on which they depend. In the Ephemeris the data are
in most cases to be regarded as functions of the time considered
as the variable or argument.

Let T, T+w, T+ 2w, T+ 3w, &ec., express equidistant values
of the variable; F, F', F"', F'" &c., corresponding values of
the given function; and let the differences of the first, second,
and following orders be formed, as expressed in the following
table :(—

Argument. | Function. | 1st Diff. | 2d Diff. | 3d Diff. | 4th Diff. | 5th Diff. | 6th Diff.
T F
a
T+ w F’ b
a c
T + 2w F" v d
a" 4 e
T + 3w F”I bl' d’ f
a”, L," el
T44w| Fv b d
al' cl”
T + 5w Fr b
a'
T + 6w F

The differences are to be found by subtracting downwards, that
is, each number is subtracted from the number below it, and the
proper algebraic sign must be prefixed. The difterences of any
order are formed from those of the preceding order in the same
manner as the first differences are formed from the given func-
tions. The even differences (2d, 4th, &ec.) fall in the same lines
with the argument and function; the odd differences (1st, 3d, &c.)
between the lines.

Now, denoting the value of the function corresponding to a
value of the argument 7'+ nw by F'™), we have, from algebra,

n—1) (n—2) c+" (n—1) (n—2) (n—38) dt&e. (68)

F®m—=F{na "("—l)b n(
et ]_..2 + 1.2.3 1.2.8.4

in which the coeflicients are those of the n* power of a binomial.
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In this formula the interpolation sets out from the first of the
given functions, and the differences used are the first of their
respective orders. If n be taken successively equal to 0, 1, 2, 3,
&c., we shall obtain the functions F, F’, F''; F'"| &c., and in-
termediate values are found by using fractional values of n. We
usually apply the formula only to interpolating between the
function from which we set out and the next following one, in
which case n is less than unity. To find the proper value of n
in each case, let 7"+ ¢ denote the value of the argument for which
we wish to interpolate a value of the function: then

nw ==t n=-E
w

that is, = is the value of ¢ reduced to a fraction of the interval w.

ExaMpLE.—Suppose the moon’s right ascension had been
given in the Ephemeris for every twelfth hour as follows:

D'sR. A. 1st. Diff. 2d Diff. 8d Diff. | 4th Diff. | 5th Diff.
1856 March 5, 0% |21% 58 28,39
+ 28m 470.04
« 5,12 |22 27 16.48 —86.97
28 10.07 + 4079
« 6, 0 |22 55 26.50 32.18 41074
27 87.89 6.53 — .66
« 6,12 (2323 8.8 25. 65 1.08
27 12.24 7.61
« 7, 0|23 50 15.63 18.04
26 54.20
« 7,12 | 017 9.8

Required the moon’s right ascension for March 5, 6*.

Here T'=March 5, 0%, t=6* w=12*, n=16—2..=%; and if we
denote the coefficients of «a, b, ¢, d, e in (68) by 4, B, C, D, E,
we have

F =21* 58~ 2839

a=-+28"47.04, A=n = % Aa=-+ 14 2352
b—=— 3697, B=A.";l=—i, Bb—= 4 4.62
c=4  4.79, 0=B.";2—_-+T',, Cc =+ 0.30
d=4+ 104, D=C."=3__ 4 Da—— 0.07
e=— 0.6 E=D.”;4=+,1G,Ee=— 0.02

’s R. A. 1856 March 5,6*............ Foo =22 12 56.74
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which agrees precisely with the value given in the American
Ephemeris.

68. The formula (68) may also be written as follows:

F@’:I’+n(a+";—](b+

"—2(c+
8

Thus, in the preceding example, we should have

n;4=—f'o»
nI3=_ £
n;2:_ 1
-y

n= 4

— 7 X — 0.66

— § (+ 174 + 0.46)

— 1 (+ 4.79 —1-.38)

— ] (—86.97 — 1-71)

5 (4 284704 + 9-.67)

Il

o) o

+ 0-.46
—1.38
—1.7

+ 9.67

=+ 1472835

and adding this last quantity, 14 2885, to 21* 58~ 2889, we
obtain the same value as before, or 22 12* 56.74.

69. A more convenient formula, for most purposes, may be
deduced from (68), if we use not only values of the functions
following that from which we set out, but also preceding values;
that is, also values corresponding to the arguments 7 — w,
T — 2w, &c. 'We then form a table according to the following

schedule:

Argument.
T—3w

T—2w
T— w
T

T4+ w
T+ 2w
T+ 3w

Function.

F,

aa

F,

"

F,
F
F
o

Vor. I.—6

1st Diff.

alll

2d Diff.

3d Diff.

4th Diff.

b6th Diff.

6th Diff.
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P'sR.A. 1st Diff. 2d Diff. 84 Diff. | 4th Diff. | 5th Difr.
1856 March 8, 124|204 28m 17,88
+ 80™ 89-.20
« 4 0|20 68 57.08 — 84127
30 4.93 — 428
« 4,12 (21 29 2.01 88.56 + 8.49
29 26.38 —0.79 —0.88
« 5 0|21 68 28.39 89.34 8.16
28 47.04 12.37 0.2
« 5,12 22 27 15.43 36.97 2.42
28 10.07 +4.79
“« 6 022 56 25.50 82.18
27 87.89
« 6,12 |28 28 8.39

~ Drawing a horizontal line under the function from which we
set out, the differences required in the formula (69) stand next

to this line, alternately below and above it.

F = 21> 58~ 2839

=428 4708, A= n = } Ad—+ 14
b—=— 3934 B=A. ";1=-— 5 Bb =+
P zw,0=xﬁ%l=_ﬁ,af=_
d=+ 316 D=C. "= g, Di=+
¢=— om E=D."FP_ 44 B —_

23 .52
4.92

2’s R. A. 1856 March 5, 6* — F% —22 12

69*. If in (69) we substitute the values

a'=al+b
d=c¢+d
&e.
we find
»— (n4+Dn, (a4 (n—1)
Fo=Ftna+ =504 1.2.3 K
M+ +Dn)(n—1)
+ 1.2.3.4 4 + &e.

@0

in which the law of the coeflicients is that one new factor is
introduced into the numerator alternately before and after the
other factors, observing still that the factors decrease by unity
from left to right. The differences employed are those which lie

on each side of the horizontal line drawn immediately
the function from which we set out.

above
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D's R. A 1st Diff. 2d Diff. |3d Diff. |4th Diff. |5th Diff.
Mar. 8, 12420228=17+.88
+80= 29.20
« 4 0|20 58 57.08 — 34027
' 30 4.93 —40.28
« 4 12|21 29 2.01 38 .55 18749
) 29 26.38 —0.79 —0:.33
«) B, 0|21 58 28 80|+ 6.1 —39 34| (+0 19| 4 3.16|(—0 54
' 28 47 .04 +2.87 —0.74
« 5 12(22 27 15 .43 36 .97 2 .42
, 28 10.07 +4.79
« 8, 0[22 55 25.50 32.18
27 37.89
« 6 ,12(23 23 3.39 .

Drawing two lines, one above and the other below the func-
tion from which we set out, and then filling the blanks by the
means of the odd differences above and below these lines (which
means are here inserted in brackets), we have presented in the
same line all the differences required in the formula (71); and
we then have

F = 21 58~ 28:.39

a—= 429671, A= n — 3 Aa— + 14 33.36
b—=— 39.34,3:?_; =43, Bb=— 4.92
c=+ 0.79, C=A."';1=_T-,, Ce= — 0.05
d=4 3.6 D— B.”’l;1=—755, Di——  0.02
e = — 0.54,E=0."’2;4=+§§,, Fe— — 0.01

Foo — 22 12 56.75

agreeing within 0°.01 with the value found in the preceding
article. IIANSEN has given a table for facilitating the use of this
formula. (See his Tubles de la Lune).

71. Another form, considered by Bessel as more accurate than
any of the preceding, is found by employing the odd differences
that fall next below the horizontal line drawn below the function
from which we set out, and the means of the even difterences
that fall next above and next below this line. Thus, if we put

by=134(+V) d=1(d+ )&
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by f (T + nw), the successive derivatives of this function cor-
responding to the same value of the argument will be denoted
by f(T+ nw), f'(T+ nw), f"(T + nw), &c., and f(T),
S(T), f'(T), &c., will denote the values of the function and
its derivatives corresponding to the argument 7, or when n = 0.
Hence, if we regard nw as the variable, we shall have, by Mac-
laurin’s Theorem,

F(T 4 mo) = F(T) +1(T) w0 + (DT + &e.

Comparing the coefficients of the several powers of n in this
formula with those in (74), we have

f'(T)=%(a—ib+ic—%d+§e—&c.)
FT)y=" G —et d—fe+ )

P = e~ §d+fe—&e)

Ty = (@ —2 e + ko)

f'(T) =;7 (e — &e.)
&e. &e. . . . ... (76)

the differences being taken as in Art. 67.
Still more convenient expressions are found by comparing
Maclaurin’s Theorem with (75); namely:

1T =% (@—}c+ape—de)
(T ZIF b—5d+ &)
f'"(T)=% (¢ —td+ &e)
f"(T)=-lw—. (d— &)

(T =lE (e — &ec)

&e. &e. W)
the differences being found according to the schedule in Art. 69,
and the odd differences, a, ¢, ¢, &c., being interpolated means.
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" The preceding formulse determine the derivatives for the value
T of the argument. To find them for any other value, we have,
by differentiating Maclaurin's Formula with reference to nuw,

S/ (T + moy =f/(T) + f"(T). w0 + 4 f7(T). n'u* + &e.  (78)

in which we may substitute the values of f(7T), f/(T), &c. from
(76) or (77).

In like manner, by successive differentiations of (78) we ob-
tain :
J'" (THn0) =f"(T)+ " (T). nw + § f* (T). nw* 4 &e.

" (T + nw)y=f"(T) + f* (T). nw + &c.

&e. &e.

76. An immediate application of (76) or (77) is the compu-
tation of the differences in a unit of time of the functions in the
Ephemeris; for this difference is nothing more than the first
derivative, denoted above by the symbol f’.

ExaMpLE.—Find the difference of the moon’s right ascension
in one minute for 1856 March 5, 0*.

We have in Art. 70, for 7 = March 5, 0, a = 29" 671,
c=+40.79, e = — 054, and w = 12* = T20". Ience, by the
first equation of (77),

F(T) = 535 (29% 671 — 0-.13 — 0.02) — 24258

On interpolation, consult also ENckE in the Jahrbuch for 1830
and 1837.

STAR CATALOGUES.

77. The Nautical Almanac gives the position of on]y a small
number of stars. The positions of others are to be found in
the Catalogues of stars. These are lists of stars arranged in
the order of their right ascensions, with the data from which
their apparent right ascensions and declinations may be ob-
tained for any given date.

The right ascension and declination of the so-called fired
stars are, in fact, ever changing: 1st, by precession, nutation,
and aberration (hereafter to be specially treated of), which are
not changes in the absolute position of the stars, but are either
changes in the circles to which the stars are referred by sphe-
rical co-ordinates (precession and nutation), or apparent changes
arising from the observer’s motion (aberration); 2d, by the
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a = cos a se¢ 3 a’'= tanecos 8 — sinasing
b —=sin asec 8 V' = cos a 8in &

¢ = 46".078 4 20”.056 sin a tan 8 ¢’ = 20".056 cos a

d = co8 a tan ¢ d = —sina

in which e = obliquity of the ecliptic. Or we may resort to
what are usually called the independent constants, and dispense
with the q, b, ¢, d, &', ¥/, ¢/, d’ altogether, proceeding then by
the formula

a=a,+ o +f + g 8in (G + a) tan 3 4 hsin (H 4 a)seea} (305
8=2¢,+ n' +icosd+ gcos(G—+ a) + k cos (H + a)sin é

the independent constants f, g, G, h, H, i being given in the
Ephemeris, together with the value of r for the given date,
expressed decimally.

It should be observed that the constants @, b, ¢, d, a’, U/, ¢/, d’
are not absolutely constant, since they depend on the right
ascension and declination, which are slowly changing: unless,
therefore, the catalogue which contains them gives also their
variations, or unless the time to which we wish to reduce is not
very remote from the epoch of the catalogue, it may be prefer-
able to use the independent constants.

In forming the products Aa, Bb, &c., attention must of course
be paid to the algebraic signs of the factors. The signs of 4, B,
C, D are, in the Ephemerides, prefixed to their logarithms; and
the signs of a, b, ¢, &c. are in some catalogues (as that of the
British Association) also prefixed to their logarithms; but I
shall here, as elsewhere in this work, mark only the logarithms
of negative factors, prefixing to them the letter n.

It should be remarked, also, that the B. A. C.* gives the

* B. A. C.—British Association Catalogue, containing 8377 stars, distributed in all
parts of the heavens; a very useful work, but not of the highest degree of precision.
The Greenwich Catalogues, published from time to time, are more reliable, though
less comprehensive. For the places of certain fundamental stars, see BESseL's
Tabulee Regiomontanz and its continuation by WorLrers and ZEcH.

Lavraxpe’s Ifistoire Céleste contains nearly 50,000 stars, most of which are em-
braced in a catalogue published by the British Association, reduced, under the
direction of F. Baily, from the original work of Lalande. The Konigsberg Observa-
tions embrace the series known as BEesseL’s ZoNEs, the most extensive series of
observations of small stars yet published. The original observations are given with
data for their reduction, but an important part of them is given in WrissE's Posi-
tiones Mediae Stellarum fizarum in Zonis Regiomontanis a BESSELIO infer —15° et 4-15°
declin. observat., containing nearly 32,000 stars.

See also STruvE's Catal. generalis, and the catalogues of ARGELAXNDER, RUMKER,
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north polar distance instead of the declination, or =, = 90° — §,;
and, since = decreases when 3 increases, the .corrections change
their sign. This has been provided for by changing the signs
of o/, ', b, ¢’y d’ in the catalogue itself, so that the computer
who employs this catalogue proceeds by the formulas (79), only
writing  and =, for J and 4.

ExaypLe.—Find the apparent right ascension and declination
of a Tauri (Aldebaran) for June 15, 1856, from the B. A. C.
This star is B. A. C. 1420. 'Whence we take for

Jan. 1, 1850, Mean R. A. — 4271911  Mean N. P. D. = 73° 47’ 47".00

Ann. prec. = 8.428 _ — 7".89 _
Prop. motion = +0.008}f°r6” = + 20.618 +0 .15} X6=  —46.4
Jan. 1, 1856, ag =4 27 39.726 : mo =718 47 0.56

We next take

from B. A.C. logs. a 84364 b 88050 ¢ 0.5350 d 7.8821

from Ephem. o ) .
for June 15. } logs. A n0.1982 B n13091 C 9.5192 D n0.9027

from B.A.C.  logs. a’ n9.2047 & 2n9.0406 ¢ »0.8971 d' 9.9635

logs. Aa n8.6346 Bb 70.1141 Cc 0.0542 Dd n8.7848
logs. Aa’ 9.4029 BY 0.3497 (¢ n0.4163 Dd’ n0.8662

Corr. of a,, Az = 0043, Bb — —1+.301,Cc — 4-1+.133,Dd — —0-.061
Corr. of z,, Aa' = +4-0".25, Bb — 42".29, C¢' = —2".61, Dd’ = —7".35

‘We have also from the Catalogue p =+ 00008, o/ =+ 0/'.15.
The fraction of the year for June 15, 1856, is 7 = 0.45; and hence

Jan. 1, 1856, a, =4+ 27™ 39.726 m =  13°47 0".58
Sum of corr. of a, = —1.186  Sum of corr. of 7, = —7 .42
™w= + 0.004 W= +0 .07

June 15, 1856, a =4 27 38.544 m = 73 46 53 .21
6 = 416 13 6.79

78. When the greatest precision is required, we should con-
sider the change in the star’s place even in a fraction of a day,
and therefore also the change while the star is passing from one
meridian to another; also the secular variation and the changes

P1azz1, 8ANTINT; and the published observations of the principal gbservatories. See
also a list of catalogues in the introduction to the B. A. C.
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in the precession and in the logarithms of the constants. Fur-
ther, it is to be observed that the annual precession of the cata-
logues is for a mean year of 365¢ 5*.8. But for a fuller consider-
ation of this subJect see Chapter XI.

CHAPTER IIL

FIGURE AND DIMENSIONS OF THE EARTH.

79. THE apparent positions of those heavenly bodies which are
within measurable distances from the earth are different for ob-
servers on different parts of the earth’s surface, and, therefore,
before we can compare observations taken in different places we
must have some knowledge of the form and dimensions of the
earth. I must refer the reader to geodetical works for the
methods by which the exact dimensions of the earth have been
obtained, and shall here assume such of the results as I shall
have occasion hereafter to apply.

The figure of the earth is very nearly that of an oblate spheroid,
that is, an ellipsoid generated by the revolution of an ellipse
about its minor axis. The section made by a plane through the
earth’s axis is nearly an ellipse, of which the major axis is the
equatorial and the minor axis the polar diameter of the earth.
Accurate geodetical measurements have shown that there are
small deviations from the regular ellipsoid; but it is sufficient
for the purposes of astronomy to assume all the meridians to be
ellipses with the mean dimensions deduced from all the measures
made in various parts of the earth.

80. Let EPQP’, Fig. 11, be one of the elliptical meridians of
the earth, £Q the diameter of the equator, PP’ the polar
diameter, or axis of the earth, C the centre, F' a focus of the
ellipse. Let

a = the semi-major axis, or equatorial radius, = CF,
b = the semi-minor axis, or polar radius, =CP,
¢ = the compression of the earth,

e = the eccentricity of the moridian.
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By the compression is meant the difference of the equatorial
and polar radii expressed in parts

Fig. 1L of the equatorial radius as unity, or
- b

P ' C = a b = l ——
a a

The eccentricity of the meridian is
x the distance of either focus from
the centre, also expressed in parts
of the equatorial radius, or, in
P Fig. 11,

o= CF
T CE
But, since PF'= CE, we have,
CF' _PF_PC'_ | PO

CE*  (E® CE?
that is,
e—1_Y _1_a_o¢
=== —1—-9
or

e=y2 —¢ (81)

By a combination of all the most reliable measures, BESSEL
deduced the most probable form of the spheroid, or that which
most nearly represents all the observations that have been made
in different parts of the world. IIc found*

b o 2981528
a T 299.1528
or
1
C =
299.1528
whence, by (81),
e = .0816967
log e = 8.912205 log /(1 — ee) = 9.9985458

* Astronomische Nachrichten, No. 438. See also Encke’s Tables of the dimensions
of the terrestrial spheroid in the Jahrbuck for 1852.
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The absolute lengths of the semi-axes, according to BESSEL, are,

a = 6377397.15 metres = 6974532.34 yds. = 3962.802 miles
b =6356078.96 ¢« = 6951218.06 ¢« = 8949.55656 «

81. To find the reduction of the latitude for the compression of the
earth. '

Let A4, Fig. 11, be a point on the surface of the earth; AT the
tangent to the meridian at that point; A0, perpendicular to A7,
the normal to the earth’s surface at A. A plane touching the
earth’s surface at 4 is the plane of the horizon at that point
(Art. 3), and therefore 4O, which is pérpendicular to that plane,
represents the vertical line of the observer at A. This vertical
line does not coincide with the radius, except at the equator and
the poles. If we produce CE, 04, and CA to meet the celestial
sphere in E’, Z, and Z’ respectively, the angle ZO’E’ is the
declination of the zenith, or (Art. 7) the geographical latitiede, and
Z is the geographical zenith; the angle Z’CE’ is the declination
of the geocentric zenith Z’, and is called the geocentric or reduced
latitude; and ZAZ'’' = CAO is called the reduction of the latitude.
It is evident that the geocentric is always less than the geogra-
phical latitude.

Now, if we take the axes of the ellipse as the axes of co-ordi-
nates, the centre being the origin, and denote by x the abscissa,
and by y the ordinate of any point of the curve, by a and b the
semi-major and semi-minor axes respectively, the equation of
the ellipse is

.T’ yl
sTp=1!
If we put

¢ = the geographical latitude,
¢’ = the geocentric “

we have, since ¢ is the angle which the normal makes with the
axis of abscisse,

dx
tan ¢ = — —
dy
and from the triangle A CB,
tan gp' = —y-
z

Vou. I.—T7
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Differentiating the equation of the ellipse, we have

y de
z a"dy
or
taq¢’=£-:tan¢=(l—e’)tan¢ (82)

which determines the relation between ¢ and ¢'.

To find the difference ¢ — ¢/, or the reduction of the latitude,
we have recourse to the general development in series. of an
equation of the form

tanxz =ptany
which [Pl. Trig. Art. 254] is
x —y=g¢sin 2y + } ¢*sin 4y + &e.
in which
_r—1
p+1

Applying this to the development of (82), we find, after divid-

ing by sin 1”7 to reduce the terms of the series to seconds,

q . q
8 2 J—
nae 28in1”

¢ —¢ = — T sin 4¢ — &e. (83)
in which
p—1_l—e—1_ @
p+1l l1—e41 2@

Employing BEsseL’s value of ¢, we find

q=

q T
—— =690".65 _ = —1"16
sin 1” 2 8in 1”

and, the subsequent terms being insensible,
¢ — ¢ = 690".65 sin 29 — 1".168in 4 ¢ (83%)

by which ¢ — ¢’ is readily computed for given values of ¢. Its
value will be found in our Table III. Vol. IL for any given
value of ¢.

ExayprLE.—Find the reduced latitude when ¢ = 35°. 'We find
by (83), or Table III.,

¢ — ¢ = 648".25 = 10’ 48".25
and hence the reduced or geocentric latitude
¢ = 34° 49’ 11”75



RADIUS OF THE EARTH. 99

82. 70 find the radius of the terrestrial spheroid for a given latitude.
Let

p = the radius for the latitude ¢ — AC.
‘We have '

p=v 2 +y
To express z and y in terms of ¢, we have from the equation of
the ellipse and its differential equation, after substituting 1 — ¢
3

for —»

a

+- L —a

1—e

= (1 —e)tan g

alte 8,

from which by a simple elimination we find

_ a cos ¢

Ty — e sin'p)
__ (1 —e)asing
" /(1 — e sin'y)

p—a \/[l—2e’sin’¢+e‘sin'¢] 8

1 — e*sintp

and hence

by which the value of p may be computed. The logarithm of
- p, putting @ = 1, is given in our Table III. Vol. II.

But the logarithm of p may be more conveniently found by a
series. If in (84) we substitute

e=1—s1
sin’eg = ¢ (1 — cos 2¢)

we find, puttinga =1,
- BE =R
1—frp —
tar [l
147 1+(1+f)+"(1+f)oos2¢

Now (Pl. Trig. Art. 260) if we have an expression of the form
X=1/(1 + m*—2m cos C) 4
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Hence, also, the following:
_ cos ¢
r= (v e—m) 6

83. To find the length of the normal terminating in the axis, for a
gicen latitude.

Putting

N = the normal = 40 (Fig. 11),

we have evidently

N_PCs¢Y ____a (90)
cos ¢ Y (1 — e'sin® )

or, employing the auxiliary 4 of the preceding article,
N=asccy
84. To find the distance from the centre to the intersection of the
normal with the axis.

Denoting this distance by ai (so that i denotes the distance
when a = 1), we have in Fig. 11,

ai = CO
and, from the triangle A CO,

;- psin(p —¢)
co8 ¢

a

or, by (88),
. € 8i .
ai = ]/—(la-_%—‘:m = ae* 8in ¢ secC ¥ 1)
85. To find the radius of curvature of the lerrestrial meridian for a
given latitude.—Denoting this radius by R, we have, from the dif-
ferential calculus,

2+ @t
Dy
where we employ the notation D,y, D2y to denote the first
and second differential coeflicients of y relatively to z. We
have from the equation of the ellipse
¥ =z bt

D’y.:—-?o——y— D:y:—-w
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whence

R _ (atyl + b‘ 1«’)*
- a‘b

Observing that 8 = a? (1 — €%), we find, by substituting the values
of z and y in terms of ¢ (p. 99),

. a(l—e)
R_(l—e‘sin’ o)t

92)

ExaMprLE.—Find the radius of curvature for the latitude of
Greenwich, ¢ = 51° 28’ 38''.2, taking @ = 6377397 metres. We
tind

R = 6373850 metres.

86. Abnormal deviations of the plumb line.—Granting the geo-
metrical figure of the earth to be that of an ellipsoid of revolu-
tion whose dimensions, taking the mean level of the sea, are as
given in Art. 80, it must not be inferred that the direction of the
plumb line at any point of the surface always coincides precisely
with the normal of the ellipsoid. It would do so, indeed, if the
earth were an exact ellipsoid composed of perfectly homoge-
neous matter, or if, originally homogeneous and plastic, it has
assumed its present form solely under the influence of the
attraction of gravitation combined with the rotation on its axis.
But experience has shown* that the plumb line mostly deviates
from the normal to the regular ellipsoid, not only towards the
north or south, but also towards the east or west; so that the
apparent zenith as indicated by the plumb line differs from the
true zenith corresponding to the normal both in declination and
right ascension. These deviations are due to local irregularities
both in the figure and the density of the earth. Their amount is,
however, very small, seldom reaching more than 3’/ of arc in
any direction. ‘

In order to eliminate the influence of these deviations at a
given place, observations arec made at a number of places as
nearly as possible symmetrically situated around it, and, as-
suming the dimensions of the general ellipsoid to be as we have
given them, the direction of the plumb line at the given place is
deduced from its direction at each of the assumed places (by

# U.8. Coast Survey Report for 1853, p. 14*,
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the aid of the geodetic measures of its distance and direction
from each); or, which is the same thing, the latitude and longi-
tude of the place are deduced from those of each of the assumed
places: then the mean of all the resulting latitudes is the geodetic
latitude, and the mean of all the resulting longitudes is the geodetic
longitude, of the place. These quantities, then, correspond as
nearly as possible to the true normal of the regular ellipsoid ;
the geodetic latitude being the angle which this normal makes
with the plane of the equator, and the geodetic longitude being
the angle which the meridian plane containing this normal
makes with the plane of the first meridian. The geodetic lati-
tude is identical with the geographical latitude as we have defined
it in Art. 81.

The astronomical latitude of a place is the declination of the
apparent zenith indicated by the actual plumb line; but, unless
when the contrary is stated, it will be hereafter understood to be
identical with the geographical or geodetic latitude.

It has recently been attempted to show that the earth differs
sensibly from an ellipsoid of revolution;* but no deduction of
this kind can be safely made until the anomalous deviations of
the plumb line above noticed have been climinated from the
discussion.

CHAPTER 1V.
REDUCTION OF OBSERVATIONS TO THE CENTRE OF THE EARTH.

87. Tue places of stars given in the Ephemerides are those in
which the stars would be seen by an observer at the centre of
the earth, and are called geocentric, or true, places. Those observed
from the surface of the earth are called observed, or apparent,
places.

It must be remarked, however, that the geocentric places of
the Ephemeris are also called apparent places when it is intended

* See Astr. Nach. No. 1308.
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lines which have a common direction, t.e. parallel lines. Buta
still more direct method of comparison is obtained by referring
them to one and the same straight line, a8 CAZ, Z being the
zenith. We then call ZCS the true and ZAS the apparent
zenith distance, and these are evidently the complements of the
true and apparent altitudes respectively.

In the figure we have at once

ZAS — ZCS=ASC

that is, the parallax in zenith distance or altitude is the angle
at the star subtended by the radius of the earth. When the star
is in the horizon, as at H’, the radius, being at right angles to
AH’, subtends the greatest possible angle at the star for the same
distance, and this maximum angle is called the Rorizontal parallaz.
The equatorial horizontal parallax of a star is the maximum angle
subtended at the star by the equatorial radius of the earth.

89. To find the equatorial horizontal parallax of a star at a given
distance from the centre of the earth.

Let
= = the equatorial horizontal parallax,

4 = the given distance of the star from the earth’s centre,
a = the equatorial radius of the earth,

we have from the triangle CAH’ in Fig. 12, if CA is the
equatorial radius,

(%3)

sin # —

Lia

The value of x given in the Ephemeris is always that which is
given by this formula when for 4 we employ the distance of the
star at the instant for which the parallax is given.

90. 7o find the parallaz in altitude or zenith distance, the carth being
regarded as a sphere.

Let
{ = the true zenith distance = ZCS (Fig. 12),

¢’ = the apparent zcnith distance = ZAS,
- p = the parallax in alt. or z. d. = CSA4.
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The triangle SAC gives, observing that the angle SAC
= 180° — ¢/,

sinp a .
g == onT
Or,
’ sin p = s8in (' — ) = sin = 8in {’ 94
p
If we put

h = the true altitude,
k' = the apparent altitude,

then it follows also that
sin p = 8in (A — A’) = s8in = cos A’ (95)

Except in the case of the moon, the parallax is so small that we
may consider = and p to be proportional to their sines [Pl. Trig.
Art. 55]; and then we have

p=r=sin{ == cos A (96)

Since when ¢’ = 90° we have sin ' = 1, and when ¢’ = 0, sin

¢’ =0, it follows that the parallax is a maximum when the star
is in the horizon, and zero when the star is in the zenith.

ExamMPLE.—Given the apparent zenith distance of Venus,
¢’ = 64° 43/, and the horizontal parallax = = 20"".0; find the
geocentric zenith distance.

log = 1.3010
¢ = 64° 43’ 070 log sin &' 9.9563
p= 18.1 logp 12573

¢ — 64 4241.9

‘When the true zenith distance is given, to compute the paral-
lax, we may first use this truc zenith distance as the apparent,
and find an approximate value of p by the formula p = = sin.¢;
then, taking the approximate value of ¢’ = { — p, we compute a
more exact value of p by the formula (94) or (96). This second
approximation is unnecessary in all cases except that of the
moon, and the parallax of the moon is so great that it becomes
necessary to take into account the true figure of the earth, as in
the following more general investigation of the subject.

91. In consequence of the spheroidal figure of the earth, the
vertical line of the observer does not pass through the centre,
and therefore the geocentric zenith distance canuot be directly
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referred to this line. If, however, we refer it to the radius drawn
from the place of observation (or CAZ’, Fig. 11), the zenith dis-
tance is that measured from the geocentric zenith of the place;
whereas it is desirable to use the geographical zenith. Ilence
we shall here consider the geocentric zenith distance to be the
angle which the straight line drawn from the centre of the earth
to the star makes with the straight line drawn through the centre
of the earth parallel to the vertical line of the observer. These two
vertical lines are conceived to meet the celestial sphere in the
same point, namely, the geographical zenith, which is the
common vanishing point of all lines perpendicular to the plane
of the horizon. Thus both the true and the apparent zenith
distances will be measured upon the celestial sphere from the
pole of the horizon.

The azimuth of a star is, in general, the angle which a vertical
plane passing through the star makes with the plane of the meri-
dian. 'When such a vertical plane is drawn through the centre
of the earth, it does not coincide with that drawn at the place of
observation, since, by definition (Art. 8), the vertical plane passes
through the vertical line, and the vertical lines are not coincident.
Hence we shall have to consider a parallax in azimuth as well as
in zenith distance.

92. To find the parallax of a star in zenith distance and azimuth
when the geocentric zenith distance and azimuth are given, and the earth
is regarded as a spheroid.* '

Let the star be referred to three co-ordinate planes at right
angles to each other: the first, the plane of the horizon of the
observer; the second, the plane of the meridian; the third, the
plane of the prime vertical. Let the axis of x be the meridian
line, or intersection of the plane of the meridian and the plane
of the horizon; the axis of y, the east and west line; the axis
of 2, the vertical line. Let the positive axis of x be towards the
south; the positive axis of y, towards the west; the positive
axis of z, towards the zenith. Let

4’ = the distance of the star from the origin, which is
the place of observation,
" — the apparent zenith distanco of the star,
A’ = the apparent azimuth “ «

* The investigation which follows is nearly the same as that of QLBERS, to whom
the method itself is due.
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then, z’ i/, 2’ denoting the co-ordinates of the star in this system,
we have, by (39),

o = 4 8in{ cos A

Yy =4sin{ sin 4

Z =4 cos ¢

Again, let the star be referred by rectangular co-ordinates to

" another system of planes parallel to the former, the origin now

being the centre of the earth. In the celestial sphere these

planes still represent the horizon, the meridian, and the prime
vertical. If then in this system we put

4 = the distance of tho star from the origin,
{ = the truo zenith distance of the star,
A = the true azimuth w ou

and denote the co-ordinates of the star in this system by z, y,
and z, we have, as before,

x=4sin{cos A
y=4sin{sind
2= 4dcos

Now, the co-ordinates of the place of observation in this last
system, being denoted by a, b, ¢, we have
a = p sin (¢ — ¢') b=20 c=pcos (¢ —¢)

in which p = the earth’s radius for the latitude ¢ of the place of
observation, and ¢’ is the geocentric latitude, ¢ — ¢’ being the
reduction of the latitude, Art. 81; and the formule of transforma-
tion from this second system to the first are (Art. 33)

x:x’+a y=y'+b z=z’+c

or, r=x—a y=y —b 2=z —c¢

whence, substituting the above values of the co-ordinates,
4'sin ' cos A’ = dsin { cos A — p 8in (¢p — ¢')
4’ sin ¢’ sin A" = 4 8in { 8in 4 } o7)
4 cos ¢ = dcos ¢ — pcos (g — ¢)

which are the general relations between the true and apparent
zenith distances and azimuths. All the quantities in the second
members being given, the first two equations determine 4’sin {’,
and 4’; and then from this value of 4’sin {’, and that of 4’cos ’
given by the third equation, 4’ and {’ are determined.
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But it is convenient to introduce the horizontal parallax
instead of 4. For, if we put the equatorial radius of the earth
=1, we have

. 1
sin ®# — —
4

and hence, if we divide the equations (97) by 4, and put
Jl
f= ]
we have
JSsin ¢ cos A’ = sin {cos 4 — p sin = sin (¢ — ¢)
Sfsin I sin A" =sin {sin 4 98)
feos? = co8 % — psinxcos (¢ — ¢)

To obtain expressions for the difference between Z and ¢’ and
between A and A’, that is, for the parallax in zenith distance
and azimuth, multiply the first equation of (98) by sin 4, the
second by cos 4, and subtract the first product from the second ;
again, multiply the first by cos 4, the second by sin 4, and add
the products: we find
fsin 2 gin (A" — A) =psin=sin (¢ —¢') 8in 4 99
fsin 7 cos (A" — A) = s8in { — p sin = sin (¢ —¢’) co8 4 99)

Multiplying the first of these by sin } (A’ — A4), the second by
cos } (4’ — A), and adding the products, we find, after dividing
the sum by cos } (4’ — A),
cos § (A’ 4+ A)

Jein ¥ =sin ¢ —psinrsin (¢ —¢) O 0 — 4)

which with the third equation of (98) will determine ¢’.

If we assume y such that
cos § (A" 4+ A) (100
cos § (4" — 4)

we have the following equations for determining ¢’:

tan y = tan (¢ - ¢)

f8in ¢ =8in { — p sin = cos (¢ — ¢') tan y } 101
Jeosl’ = cos{ — psinxcos(p — ¢') (101)

which, by the process employed in deducing (99), give

Sfein (F—0) = p 8in = cos (¢ —¢") Bln-égs_:ﬁ 00
cos (£ —7) (102)

feos (I — ) =1—psinxcos (¢ — ¢)
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By multiplying the first of these by sin } (£’ — ¢), the second
by cos } (I’ — £), and adding the products, we find, after dividing

by cos } (" — ),

f=l_psinr:cos(¢—¢')cos[i T4+0—1r]
cosycos § (I —Q)

or multiplying by 4,

41— 4 P08 (p—¢cos [} & +0—r] (103)
cosycos (' —¢)

The equations (99) determine rigorously the parallax in
azimuth; then (100) and (102) determine the parallax in zenith
distance, and (103) the distance of the star from the observer.

The relation between 4 and 4’ may be expressed under a more
simple form. By multiplying the first of the equations (101) by
cos 7, the second by sin 7, the difference of the products gives

4 =45 C=n (104)
sin (' —7)

93. The preceding formule may be developed in series.
Put o ,
m— P8iN xsl'n (¢ —¢")

sin {

then (99) become

fsin{'sin (A’ — A) =msin{sin 4
Ssin ¢ cos (4’ — A) =s8in { (1 — m cos 4)

whence

tan(A’—A)=—msmA

1l—mcos 4 (105)

and therefore [Pl. Trig. Art. 258], A’ — A being in seconds,

mseinA  m*sin24 m*sin84
A — A4 —=- < el
sin 1” + 2 sin 1” + 8sin 1”

+ &e.  (106)

To develop r in series, we take

cos [4 4 4 (4 — 4A)]
cos § (A" — 4A)
=tan (¢ — ¢') [cos A — sin 4 tan } (4’ — 4)]

lan y = tan (¢ — ¢')

whence, by interchanging arcs and tangents according to the
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formule tan'y =y — } * + &c., tan 2 =1z + } 28 + &e. [PL

Trig. Arts. 209, 213],

' {¢ — ¢')*p 8in x 8in? A 8in 1”
2s8in {

where the second term of the series is multiplied by sin 1’/

because y and ¢ — ¢’ are supposed to be expressed in seconds.
Again, if we put

y=(p—¢)cos 4 — + &c. (107)

__psinzcos (p —¢)
- cos y

we find from (102)

e n sin (£ —p)
tan (¢ c')_l—ncozs €—n (108)

whence, {’ — { being in seconds,

_,_nein({—y) n'sin2(l—y) n*sin3 (L —y) & 109
(= sin 1” 2 sin 1” 3 sin 1” +&e. (109

Adding the squares of the equations (102), we have

f’=(§)’=l—2ncos(t—r)+n’

whence [equations (4) and (B), Art. 82]

n* cos 2 (¢

logl:logd—ﬂ(ncos(t—r)+ : “’)+&c.) (110)

where M = the modulus of common logarithms.

94. The second term of the series (107) is of wholly inappre-
ciable effect; so that we may consider as exact the formula

y= (¢ —¢)cos 4 111)

and the rigorous formulse (105) and (108) may be readily com-
puted under the following form :

" Put .
sin 8 — m cos A — P8 7 8in (p — o) cos 4
sin {
then . a1z
tan (A’_A)=§Mn_4 = tan @ tan (45° 4 % §) tan 4

1—sginég
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Put
sin 8’ = n cos (¢ — y) = psin 7 cos (¢ — ¢') cos (£ —)
cos y
then a13)
in & —
tan (¢ — ¢) ="n¥tan C—7)
1 —siné¢

= tan ¢ tan (45° 4 § ¢)tan (¢ —7)

ExampLE.—In latitude ¢ = 88° 59’ given for the moon, 4 =
320° 18’, £ =29° 30/, and = = 58’ 37"".2, to find the parallax in
azimuth and zenith distance.

We have (Table IIL) for ¢ = 88° 59/, ¢ — ¢’ =11’ 15", log p
=9.999428: hence by (111) y=8’389".8 and { —r=29° 21’
207".7; with which we proceed by (112) and (113) as follows:

log p sin = 8.23118 log p sin = 8.231179
log sin (¢ —¢')  7.51488 log cos (¢ — ¢') 9.999998
log cosec { 0.30766 log sec y 0.000001
log cos 4 9.88615 log cos (§{ — %) 9.940318
¥ = 18", log sin ¢ 5.93087 ¢ = 51’ 1.5, log sin ¥ 8.171491
log tan ¢ 5.93987 log tan ¢ 8.1715639
log tan (45° 4§ 9) 0.00004 log tan (45° 4 § &) 0.006446
log tan 4 n9.91919 log tan ({ — y) 9.760087
log tan (4’ — A4) n5.85910 log tan ({' — ) 7.928072
A — 4" = —14".91 ' —§=29"7T.79

A’ = 820" 17 456".09 = 29° 59 7°.79

It is evident that we may, without a sacrifice of accuracy,
omit the factors cos (¢ — ¢’) and cos y in the computation of sin &.

If we neglect the compression of the earth in this example,
we find by (94) ¢’ — ¢ =29’ 17”°.8, which is 10" in error.

95. To find the parallax of a star in zenith distance and azimuth
when the apparent zenith distance and azimuth are given, the earth
being regarded as a spheroid.

If we multiply the first of the equations (101) by cos ¢’ and the
second by sin {’, the difference of the products gives

__psin 7 cos (p—¢') sin (¢ —7)

sin (7' —4) cos y

for which, since cos (¢ — ¢’) and cos y are each nearly equal to
unity, we may take, without sensible error,

gin (§' —{) =p sin =z 8in (' —y) (114)
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in which 7 has the value found by (111), or, with sufficient accu-
racy, by the formula

r=(p—¢) cos A’ (115)
Again, if we multiply the first of the equations (98) by sin A’
and the second by cos A4’, the difterence of the products gives

p sin = 8in (¢ — ¢') sin A’
sin

sin (4'—4)=

(116)

to compute which, { must first be found by subtracting the value
of the parallax ¢’ — ¢, found by (114),from the given value of ¢’.

ExaupLe.—In latitude ¢ = 38° 59, given for the moon 4’ =
820° 17’ 45'.09, ¢’ =29° 59’ 779, = =58’ 87"".2, to find the
parallax in zenith distance and azimuth.

‘We have, as in the example Art. 94, 9 — ¢’ =11’ 15", log p
=9.999428, y = (¢ —¢’) cos A’ =8’ 39"".8, {’ —r=29° 50’ 28"".5;
and hence, by (114) and (116),

log p sin = 8.231179 log p sin = 8.23118
log sin (' —y) 9.696879 log sin (¢ —¢') 7.51488
log sin (& —¢) 7.928058 log sin A’ n9.80538
¢ —C=297".79 log cosec ¢ 0.30766

= 29°30' 0" log sin (A’ — A)n5.85910

A'—A=-—-14"91
A=23820° 18" 0"

agreeing with the given values of Art. 94.

96. For the planets or the sun, the following formule are always
sufficiently precise :

¢ —¢ =prsin (& —7p)
A" — A = pr sin (¢ — ¢') 8in A4’ cosec ¢’ }(117)

and in most cases we may take {’ —{ == sin {/,and 4’ — 4 =0.

The quantity pz is frequently called the reduced parallar, and
n — pr = (1 — p)x the reduction of the equatorial parallax for the
given latitude; and a table for this reduction is given in some
collections. This reduction is, indeed, sensibly the same as the
correction given in our Table XIIL, which will be explained
more particularly hereafter. Calling the tabular correction ax,
we shall have, with sufficient accuracy for most purposes,

pr =17 — Ax '
Vor. L—8
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97. The preceding methods of computing the parallax enable
us to pass directly from the geocentric to the apparent azimuth
and zenith distance. There is, however, an indirect method
which is sometimes more convenient. This consists in reducing
both the geocentric and the apparent co-ordinates to the point in
which the vertical line of the observer intersects the axis of the earth. I
shall briefly designate this point as the point O (Fig. 11).

‘We may suppose the point O to be assumed as tlre centre of
the celestial sphere and at the same time as the centre of an
imaginary terrestrial sphere described with a radius equal to the
normal OA (Fig. 11). Since the point O is in the vertical line of
the observer, the azimuth at this point is the same as the appa-
rent azimuth. If, therefore, the geocentric co-ordinates are first
reduced to the point O, we shall then avoid the parallax in
azimuth, and the parallax in zenith distance will be found by the
simple formula for the earth regarded as a sphere, taking the
normal as radius. _

Since the point O is in the axis of the celestial sphere, the
straight line drawn from it to the star lies in the plane of the
declination circle of the star; the place of the star, therefore, as
seen from the point O, differs from its geocentric place only in
declination, and not in right ascension. We have then only to
find the reduction of the declination and of the zenith distance
to the point O.

1st. T reduce the declination to the point O.—Let
PP’, Fig. 13, be the earth’s axis; C the centre;
s O the point in which the vertical line or normal

of an observer in the given latitude ¢ meets the
axis; S the star. We have found for CO the

Fig. 13.

? expression (Art. 85)
CO =ai
\ in which a is the equatorial radius of the earth,
P and
i — e gin ¢
V(1 — e*sin? ¢)
Let
4 = the star’s geocentric distance = SC,
4, = the star’s distance from the point 0 = SO,
d = the geocentric declination = 90° — PCS,

8, = the declination reduced to the point 0 = 90° — POS,
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then, drawing SB perpendicular to the axis, the right triangles
SCB and SOB give

4, 5in 8, = 48in 3 4 ai
A: cosd, — 4 cos 3 } 118)

which determine 4, and 8,. From these we deduce

4, 8in (3, — 3) = ai cos 3
A: cos (8, — 8) =4 + aisin } (119)

which determine 4, and the reduction of the declination. If we
divide these by 4, and put

4 .
f,=:" sin 7 =

[N

in which 7 denotes, as before, the equatorial horizontal parallax,
they become
f,8in (8, — 8) = {sin = cos 3
. fico8 (3, —3) =14 isinxsind
whence
{8in = cos 8

tan(8, —0) —m —MMM——
@, ) 14 ¢sin = sin 8

or in series [Pl. Trig. Art. 257),

isin rcos 3 (isinx)sin28
sin 17 28in 1”

8, —d= + &e.

But since the second term of the series involves #* and conse-
quently ¢*, and this is further multiplied by the small factor sin’ z,
the term is wholly inappreciable even for the moon; and, as
the first term cannot exceed 25’ in any case, we shall obtain ex-
treme accuracy by the simple formula

3, —38=incos?d (120)

The value of 4, is found from (119), by the same process as
was used in finding 4’ in (103), to be

sin § (3, + 8)

A’=A{l+tsm"cos}(6i—a)

or, on account of the small difference between 4, and 4,

4, = 4 (1 + i sin = sin &) 121
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A0=N=21
: 14

. If now in the vertical plane passing through the line ZO and
the star S we draw SB perpendicular to 0Z, and put

¢, = the zenith distance at 0 = S0Z
¢’ = the apparent zenith dist. = SAZ

the triangles OSB, ASB give

1
y: 4 =4 P
cos ¢’ , cos &, p } (123
4 sin ¥ = 4‘ sin Ci

Dividing these equations by 4,, and putting
. 1
’A—l -—f 1 sin T, = ;—A—l'
they become
f.co8 & = cos§, — sin =,
Jf.8in ¢ =sin ¢,
from which we deduce

f.8in (¢ —¢,) =sin =, 8in ¢,
ficos (§ —¢&)=1—sin= cos {,
_ _ sin =, sin {, 124
tan (¢ c")_'l—tain z, €08 ¢, (29
and in series,
sin », 8in¢, , sin’x sin 2 {, + &o.

L= 2 sin 1"

(125)

Or, rigorously,

gin # = sin n, co8 {,
tan (& — ¢,) = tan ¢ tan (45° + % 9) tan ¢, } (126)

To find 7, we have

sin H=—= T ! s .
pd, pd(1 4 A sin = 8in ¢ 8in 3)
or sin 7, = Smr (127

p(1 + A sin = sin ¢ sin 3)
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But this very precise expression of 7, will seldom be required:
it will generally suffice to take

. sin=
sm 7, = ——
P

or ™=

e
which will be found to give the correct value of =, even for the
moon, within 0.2 in every case. Where this degree of accu-
racy suffices, we may employ a table containing the correction
for reducing 7 to m;, computed by the formula

An'=1r‘-—-1r=1r(l—1)
YA
Table XTII., Vol. II., gives this corréction with the arguments =

and the geographical latitude ¢. Taking the correction from
this table, therefore, we have

n, =m -+ Ax . (128)

3d. To compute the parallax wn zenith distance for the point O when
the apparent zenith distance is given. ‘

Multiplying the first equation of (123) by sin ¢’, the second by
cos ¢/, and subtracting, we tind

sin (' —¢) = —;—sin <
1

or : sin (' — ¢,) =sin =, sin {’ 29

If we denote the apparent altitude by A’ and the altitude
reduced to the point O by A,, this equation becomes

sin (h, — k') = sin =, cos I (130)

ExamprLE.—In Latitude ¢ = 38° 59, given the moon’s hour
angle ¢ = 341° 1’ 86"".85, geocentric declination & = 4 14° 89’
24'.54, and the equatorial horizontal parallax = = 58’ 87"".2, to
find the apparent zenith distance and azimuth.

The geocentric zenith distance and azimuth, computed from
these data by Art. 14, are { = 29° 30’, 4 = 320° 18’, which are
the values employed in our example in Art. 94. To compute
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by the method of the present article, we first reduce the declina-
tion to the point O by (122), as follows:

For ¢ = 88° 59" log 4 7.8250

#=23517"2 log = 3.5462

log sin ¢  9.7987

3=14°89'24"564 logcosd 9.9856

3 —8= 14 31  log(s,—3d) 1.1555
8, = 14° 39’ 38”.85

With this value of 4, and ¢ = 341° 1’ 36’’.85, the computation
of the zenith distance and azimuth by Art. 14 gives for the
point O

¢, = 29° 20’ 47".67 A, = 320° 17" 45".09

and this value of A4, is precisely the same as 4’ found in Art. 94,
as it should be, since the azimuth at the point O and at the
observer are identical.

‘We find from Table XIII. ar = 4’’.6, and hence = = 58’ 37//.2
+ 4/7.6 = 58’ 41’".8; and then, by (126),

log sin =, 8.23232

log cos ¢, 9.93971

8 — 51’ 5" log sin & 8.17203

log tan ¥ 8.17208

log tan (45° + 1 %) 0.00645

g, = 29° 29’ 47".67 log tan £, 9.75258

¢—¢, = 2920 .03 log tan (' —¢,) 7.93111
U'=29°59 7".70

agreeing with the value found in Art. 94 within 07.09. If we
had computed 7, by (127), the agreement would have been exact.

98. To find the parallax of a star in right ascension and declination
when its geocentric right ascension and declination are given.

The investigation of this problem is similar to that of Art. 92.
Let the star be referred by rectangular co-ordinates to three
planes passing through the centre of the earth: the first, the
plane of the equator; the second, that of the equinoctial colure;
the third, that of the solstitial colure. Let the axis of x be the
straight line drawn through the ecquinoctial points, positive
towards the vernal equinox; the axis of y, the intersection of
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the plane of the solstitial colure and that of the equator, positive

towards that point of the equator whose right ascension is 90° ;.
the axis of z, the axis of the heavens, positive towards the north.

Let

o = tho star’s geocentric right ascension,
é= “ “ declination,
4= “ “ distance,

then the co-ordinates of the star are

X = 4 co8 3Co8 a
y=4dcosdsina
2= 4 sin &

Again, let the star be referred to another system of planes
parallel to the first, the origin being the observer. The vanish-
ing circles of these planes in the celestial sphere are still the
equator, the equinoctial colure, and the solstitial colure. Let

o/ = the star’s observed right ascension,
&= “ “ declination,
4 = ¢  distance from tho observer,

where by observed right ascension and declination we now mean
the values which differ from the geocentric values by the paral-
lax depending on the position of the observer on the surface of
the earth. The co-ordinates of the star in this system will be

a’ = 4' cos & cos o’
¥ = 4 cos & sin o’
Z=4sind
Now, if
© = the sidereal time — the right ascension of the observer's
meridian at the instant of observation,
¢' = the reduced latitude of the place of observation,
p = the radius of the carth for this latitude,

then ©, ¢/, and p are the polar co-ordinates of the observer,
entirely analogous to a, d, and 4 of the star, so that the rectan-
gular co-ordinates of the observer, taken in the first system, are

a = p cos ¢’ cos©
b =pcos ¢ 8inO
¢ =psin ¢
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ascension or a’ — a; (136) the parallax in declination, or ¢’ —d;
and (137) determines 4’.

99. To obtain the developments in series, put

sin = cos ¢’
m="rNTCOR¢
cos ¢

then from (133) we have

' ___msin(a — O)
tan (&' — ) =1 cos (e —9) (s8)
whence
__ms8in (a — ©) = m?sin 2 (a — O) .
o —a= sin 17 + 2 sin 17 + & (189)
Putting
n — P 8in 7sin ¢
- sin
we have from (136) _
_ nsin(3—yp)
tan (# — ) = p R ST T (140)
whence
nein(@—y) , n*'sin2 (3 —y)
¥—d=—GnT Ten 1 T & (141)

100. The quantity @ — © is the hour angle of the star east of
the meridian. According to the usual practice, we shall reckon
the hour angle towards the west, and denote it by ¢, or put

t=0 —a

and then we shall write (188) and (140) as follows:

) _ meint
tan (a a)_l-—mcost
tan (8 — &) — SN (r —9)

sy pp—

The rigorous computation will be conveniently performed by
the following formulee:
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p 8in = cos ¢’ cos ¢
cos 8
tan (o — a’) = tan 8 tan (45° 4 § 9) tan ¢
tan ¢’ cos § (a — o)
cos [t + ¢ (o —a')]
p 8in = 8in ¢’ cos (y — 9)
sin
tan (8 — &) = tan ¢ tan (45° 4 § &) tan ( — 3)

sind =mcost =

tan y = (142)

sind¥ =ncos(y — ) =

101. Except for the moon, the first terms of the series (189)
and (141) will suffice, and we may use the following approxi-
mations :
pr cos ¢’ sin ¢

’
eo—06 =

cos ¢
tan ¢’
tan y = con L (143)
sy
d_y_rrsing .sm(r—d)
sin y

If the star is8 on the meridian, we have { =0, and hence
r— ¢, and
¢ — & = pr sin (¢ — 9)

Since in the meridian we have { = ¢ — 4, it is easily seen
that ¢’ — ¢ found by (108) and ¢’ — J found by (140) will then
be numerically equal, or the parallax in zenith distance is numeri-
cally equal to the parallax in declination when the star is on the meri-
dian.

102. Tb find the parallax of a star in right ascension and declination,
when its observed right ascension and declination are given.

Multiplying the first equation of (132) by sin a’, the second
by cos @/, and subtracting one product from the other, we find

sin (a — o) = £ sin = cos ¢’ sin (© — o)
cos &

In like manner, from (135) we deduce
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, . sy _
sin (6_6,)___psm1rsm¢ sin (y )

sin y

‘We have here © — a’ equal to the apparent or observed hour
angle; and hence, putting

t'=0 —ad
the computation may be made under the following form :

__psinncos ¢'sin ¢’

(o= = cos &
—-tansﬂ'cos}(a—u') ;
tanr—'coii[t'—*(u—u')] (44)
sin (¢ — &) P sin = sin ¢’ sin (y — &)

_siny

In the first computation of @ — a’ we employ &’ for 8. The
value of @ — &’ thus found is sufficiently exact for the compu-
tation of y and é — &’. With the computed value of & — &’ we
then find d and correct the computation of @ — a’.

ExamprLE.—Suppose that on a certain day at the Greenwich
Observatory the right ascension and declination of the moon
were observed to be

o’ = T* 41" 20°.436
& = 15° 50’ 27".66

when the sidereal time was
© =11*17=0-.02
and the moon’s equatorial horizontal parallax was
n = 56' 57".5
Required the geocentric right ascension and declination.

We have for Greenwich ¢ = 51° 28’ 38".2, and hence (Table IIL)
¢ — ¢ =11' 13".6, ¢' = 51° 17’ 24".6, log p = 9.9991134. The com-
putation by (144) is then as follows:



PARALLAX. 125

o’ (in arc) = 115° 20’ 6".54 log p 8in 7 8.218377

(2] « —169 16 0 .30 log cos ¢ 9.796142

t—= 63 b4 63 .76 log sin ¢’ 9.907489

}(a—o)= 14 66 .8 (1) 7.922008

! —§(a—a)= 63 89 68 log cos & 9.983186

log sec [¢' — (o — a')] 0.227319 App. logsin (o —a’) 7.938828

log cos § (a — @) 9.999996 Approx.a — o' = 29’ 51".68

log tan ¢ 0.096133 1) . . 7.922008

log tan y 0.323448 log cos & 9.981835

y = 64°385'57".6 log 8in (& — a') 7.940178

y—d& = 48 45 30 a—a' = 4 29'57".28

log psin 7 8.218377 a =116° 50’ 8".77

log sin ¢’ 9.892275 = Th 43" 2(0.251
log sin (y — &) 9.876181
log cosec y 0.044153
log sin (6 — d) 8.030986
6§ — &= - 8656”24
= 16° 27’ 22".90

103. For all bodies except the moon, the second computation
will never affect the result in a sensible degree, and we may use
the following approximations:

, __ pmcos ¢ sint

@ — 06 =

cos &'
tan ¥
t =
an y cos ¢ (145)
P — pr 8in gp'.sin G—12
sin y

For the sun, planets, and comets, it is frequently more conve-
nient to use the geocentric distance of the body instead of the
parallax, or, at least, to deduce the parallax from the distance,
the latter being given. This distance is always expressed in
parts of the sun’s mean distance as unity. If we put

m, = the sun’s mean equatorial horizontal parallax,
4, = the sun’s mean distance from the earth,

we have, whatever unit is employed in expressing 4, 4,, and a,

. a .
Blnﬂ'-——d— ano=

a2
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whence

. 4, .
sin # — A—Sln T
and when we take 4,=1,
inx—S0T =" 146
sin = y or= Y] (146)

According to ENCKE's determination
7=18".57116  log =, — 0.93304

ExaMPLE.—DoNATI'S comet was observed by Mr. James FERr-
gusoN at Washington, 1858 Oct. 13, 6* 26" 211 mean time,
and its observed right ascension and declination when corrected
for refraction were

o = 236° 48" 0.5
& = —17° 86" 52".8

The logarithm of the comet’s distance from the earth was log 4
=0.T44. Required the geocentric place.

‘We have for Washington ¢ = 38° 53’ 39//.3, whence, by Table
IIL., log pcos ¢’ = 9.8917, log psin ¢’ = 9.7955. Converting the
mean into sidereal time (Art. 50), we find © = 19* 55~ 16'.98.
Hence, by (145) and (146),

© = 298° 49'.2 log tan ¢ 9.9038

o/ =236 48.0 log cos ¢/ 9.6713
= 62 1.2 log tan 0.2325
log =, 0.9330 r = 59° 39'.2
log 4 9.7444 y— =267 16.1
log = 1.1886
log p= cos ¢ 1.0803 log oz 8in ¢’ 0.9841
log sin ¢/ 9.9460 log sin (y — &) 9.9649
log sec &  0.0038 log cosec y 0.0640
log (a — o) 1.0301 log (3 — &) 0.0130
o —a = + 10".7 3 —3d = + 10”3

Ience, for the geocentric place of the comet,
o = 236° 48’ 11”.2 = —17°386"42".5

104. Parallax in latitude and longitude.—Formulee similar to the
above obtain for the parallax in latitude and longitude. We
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direction of a ray. of light, the path of the ray will be at first a
straight line; but upon entering the atmosphere its direction
will be changed.. According to the second law above stated, the
new medium being the denser, the ray will be bent towards the
normal, which in this case is a line drawn from the centre of the
earth to the surface of the atmosphere at the point of incidence.

The atmosphere, however, is not of uniform density, but is
most dense near the surface of the earth, and gradually decreases
in density to its upper limit, where it is supposed to be of such
extreme tenuity that its first effect upon a ray of light may be
considered as infinitesimal. The ray is therefore continually pass-
ing from a rarer into a denser medium, and hence its direction
is continually changed, so that its path becomes a curve which
is concave towards the earth.

The last direction of the ray, or that which it has when it
reaches the eye, is that of a tangent to its curved path at this
point; and the difterence of the direction of the ray before en-
tering the atmosphere and this last direction is called the astro-
nomical refraction, or simply the refraction.

Thus, Fig. 16, the ray Se from a star, entering the atmosphere
at e, is bent into the curve ecAd
which reaches the observer at 4 in
the direction of the tangent S’A
drawn to the curve at 4. If CAZ
is the vertical line of the observer,
or normal at A4, by the first law of
the preceding article, the vertical
plane of the observer which con-
tains the tangent AS’ must also
contain the whole curve Ae and
the incident ray Se. Ilence refrac-
tion increases the apparent altitude
of a star, but does not affect its azi-
muth.

The angle S’AZ is the apparent ze-
nith distance of the star. The true zenith distance* is strictly the
angle which a straight line drawn from the star to the point 4

Fig. 186.

c

* By true zenith distance we here (and so long as we are considering only the
effect of refraction) mean that which differs from the apparent zenith distance only
by the refraction.

Vor. L—9
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TaBLe II. is Besser’s Refraction Table,* which is generally
regarded as the most reliable of all the tables heretofore con-
structed. In Column A of this table the refraction is regarded
as a function of the apparent zenith distance 2, and the adopted
form of this function is

r=af4rrtanz

in which @ varies slowly with the zenith distance, and its loga-
rithm is therefore readily taken from the table with the argu-
ment z. The exponents A and 2 differ sensibly from unity only
for great zenith distances, and also vary slowly; their values are
therefore readily found from the table.

The factor 8 depends upon the barometer. The actual pres-
sure indicated by the barometer depends not only upon the
height of the column, but also upon its temperature. It is,
therefore, put under the form

8= BT

and log B and log T are given in the supplementary tables with
the arguments ‘height of the barometer,” and’ “height of the
attached thermometer,” respectively ; so that we have

logg=1log B+ log T

Finally, log y is given directly in the supplementary table with
the argument ¢ external thermometer.” This thermometer must
be so exposed as to indicate truly the temperature of the atmo-
sphere at the place of observation.

In Column B of the table the refraction is regarded as a
function of the true zenith distance { expressed under the form

r=ad/84 y tan ¢

and log a’, A’, and 2 are given in the table with the argument ¢;
B and 7y being found as before.

Column A will be used when 2 is given to find ¢ ; and Column
B, when ¢ is given to find 2.

Column C is intended for the computation of differential re-
fraction, or the difference of refraction corresponding to small

* From his 4stronomische Untersuchungen, Vol 1.
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Tog B = + 0.00258 log 7 = + 0.04545
log T= + 0.00127

log 8 = -+ 0.00380
Hence the refraction is computed as follows:

loga= 174981

A log # = log 84 = 4 0.00381

Alog y = log y* = + 0.04694

‘log tan z = 0.69154

r=2310".568 = 510”68 logr=  2.49210

The true zenith distance is, therefore, 78° 30’ 0’ 4 &’ 10".53 =
78° 35’ 10”7.53.

ExaMPLE 2.—Given the true zenith distance ¢ = T78° 85/
107.53, Barom. 29.770 inches, Attached Therm. — 0°.4 F.,
External Therm. — 2°.0 F.

We tind from Table II., Col. B, for 78° 85’ 10",

log o/ = 1.74680 A’ = 0.9967 A = 1.0261
and from the tables for barometer and thermometer, as before,

log B — + 0.00253 log y = + 0.04545
log T= + 0.00127

log # = + 0.00380
The refraction is then computed as follows:

logd = 1.74680

A'log 8 = log 84 = + 0.00379

X log yr = log y¥ = + 0.04663

log tan £ =  0.69489

r = 810".58"” = 5’ 10".53 logr= 249211

and the apparent zenith distance is therefore 78° 30’.

ExaMrLE 3.—Given 2 = 87° 30/, barometer and thermometer
‘as in the preceding examples.
By the supplementary table above given,

log R = 298269
A =10208 log3— -+ 000380 log 54 = - 0.00381
1=12624 logy =+ 004545 logy» = + 0.05738

r= 1826"8 logr =  3.04388
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fracted in the directions ed, de, &c. to the point A. The last
direction of the ray is a4, which, when the number of strata is
supposed to be infinite, becomes a tangent to the curve ecA at 4,
and consequently AaS’ is the apparent direction of the star. Let
the normals Ce, Cd, &c. be drawn to the successive strata. The
angle Sef is the first angle of incidence, the angle Ced the first
angle of refraction. At any intermediate point between e and A,
as ¢, we have Ced, the supplement of the angle of incidence, and
Ceb, the angle of refraction.
If now for any point, as ¢, in the path of the ray, we put

i = the angle of incidence,

J = the angle of refraction,

p# = the index of refraction for the stratum above ¢,

o= « “ “ below ¢,
then, Art. 105,

o,
Snt_# (148)
sinf p
If we put
¢ = the normal Ce to the upper of tho two strata,
qJ - &« Ch « lower “ «
i = tho angle of incidence in the lower stratum,
= 180° — Cbc,
the rectilinear triangle Che gives
sin/ ¢
sinf ¢

which, with the above proportion, gives
gnsini =gy sin?

an equation which shows that the product of the normal to any
stratum by its index of refraction and the sine of the angle of
incidence is the same for any two consecutive strata; that is, it
is a constant product for all the strata. If then we put

2 = the apparent zenith distance,
a = the normal at the observer, or radius of the earth,
1, = the index of refraction of the air at the observer,

we have, since z is the angle of incidence at the observer,

grsini =ap,sin z (149)
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Li )l"'l — g. (151)
which with (149) gives
shi:(ﬂfﬁnz (152)
,
or, logarithmically, °
log sini=nlog r 4+ log(sil:,z)

where the last term is constant. By differentiation, therefore,

g,
tan { ©
which with (150) gives
di
dr = —
n
and, integrating, )
r= -:; +C

To determine the constant C, the integral is to be taken from
the upper limit of the atmosphere to the surface of the earth.
At the upper limit »=0; and if we put ¢ = the value of 7 at that
limit, we have

D)

At the lower limit the value of r is the whole atmospheric
refraction, and ¢{=2z: hence

(153)

To find &, we have, by putting # =1 in (152), since the density
of the air at the upper limit is to be taken as zero,

sin 2
"oll

(154)

’

sin $ —

Having then found g, at the surface of the earth and suitably
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is known from experiment; so that the true relation between
the pressures and densities at different temperatures is expressed
by the known formula

P (EHICER)

whence

% =1+4e(r—10) amny

which combined with (169) gives
r=2l¢ (1,— 1)

and hence equal increments of z correspond to equal decrements
of . Hence, in this hypothesis, the heat of the strata of the atmo-
sphere decreases as their density in arithmetical progression. The
value of e, according to RupBEre and REeNAULT, is very nearly

1 . 21
e Hence we must ascend to a height —
order to experience a decrease of temperature of 1° C. But,
according to the observations of Gy Lussac in his celebrated
balloon ascension at Paris (in the year 1804), the decrease of
temperature was 40°.25 C. for a height of 6980 metres, or 1° C.
for 173 metres, so that in the hypothesis under consideration
the height is altogether too small, or the decrease of temperature
is too rapid. This hypothesis, therefore, is not sustained either
by the observed refraction or by the observed law of the decrease
of temperature.

= 58.6 metres, in

112. Second hypothesis.—DBefore proposing a new hypothesis,
let us determine the relation between the height and the density
of the air at that height, when the atmosphere is assumed to be
throughout of the same temperature, in which case we should
have the condition (170). Resuming the differential equation
(161)

dp = sd a )
P = o3 (a_'_‘r

put
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in which s is a new variable very.nearly proportional to z. We
then have
dp = — goad ds

which with the supposition (170) gives

dp — __ 9.%,ads
p Y

Integrating,
logp =— %qi’as +C
o

in which the logarithm is Napierian. The constant being
determined so that p becomes p, when s = 0, we have

logp, = C
and therefore °
3 as
lo .]_) — — g"_o. 8 = — —
gPo Do “ ]

where [ has the value (163). Henée? ¢ being the Napierian base,

P_3_ % 2
P 8 ¢! 172
which is the expression of the law of decreasing densities upon
the supposition of a uniform temperature. In our first hypo-
thesis the temperatures decrease, but nevertheless too rapidly.
We must, then, frame an hypothesis between that and the hypothesis of
a uniform temperature.

Novw, in our first hypothesis we have by (169), within terms
involving the second and higher powers of s,

ph__,_ a8
pd 21

and in the hypothesis of a uniform temperature,

Ph_ g
Pl

The arithmetical mean between these would be
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but, as we have no reason for assuming exactly the arithmetical
mean, BESSEL proposes to take

Ph_ 12 (%) e 173
¥ ) A +3 h 173)
h being a new constant o be determined so as to satisfy the observed
refractions. This equation, which we shall adopt as our second
hypothesis, expresses the assumed law of decreasing tempe-
ratures, since, by (171), it amounts to assuming

lde(rer)=eh (174)

and it follows that in this hypothesis the temperatures will not
decrease in arithmetical progression with increasing heights,
though they will do so very nearly for the smaller values of s,
that is, near the earth’s surface.

Now, combining the supposition (178) with the equation

dp —_ — g,ﬂ()dS .
we have
as as
d_p —_ — g"iae_Tds = —ie'h'ds
p Py l

Integrating and determining the constant so that for s = 0, p
becomes p,, we have

a
g_ —=e % (eh_l)
y 23

which with (178) gives*

A 2 as
=09, TP D+Y

Inasmuch as the law of the densities thus expressed is still
hypothetical, we may simplify the exponent of e. For if & is
much greater than ! (as is afterwards shown), we may in this ex-

as
ponent put e* _1=%s and we shall have as the expression
of our hypothesis
A—1, a
b= T h =g AT (175)

* BesszL. Fundamenta Astronomise, p. 28.
Vor. L—10
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By comparing this with (172), we see that this new hypothesis

differs from that of a uniform temperature by the correction af
applied to the exponent of e.
Putting, for brevity,
p="t8 (176)
we have
=g e " @am

in which f is constant. This expression of the density is to be
introduced into the differential equation of the refraction (150).
Now, by (149), in which ¢ = a + z, we have

T @t oe »
whence
tan { — si"i. = Mot
vameE (|5 - a—ar e
(1 —38)sinz

=\/ [cos’ z2— ( 1 —L,:; )+ (28 — 8*) sin? z]

From the equation ;2 =1 4 4 kd we deduce

dp _ 2kds
r 14 4k

and if we introduce as a constant the quantity

2k,
*THF an, a78)

(which for Barom, 0=.76 and Therm. 0° C. is @ = 0.000294211)

w__"n
» 1—2¢(1_:—)

We might neglect the square of %, and consequently, also, that of
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e—B1 — g—BV _ si:fz [1—e=8"]e=p"

—_— _i_ D [(1 — e"“')’e —ﬂ:']
1.2s8in'*z
__“’_é_ — p—B3'\s ,—B2
T23 a2 (A=) e™™]
_ G‘ﬂ .D'-l [(1 _ e_p,l). e_ﬂ"]
1.2.3...n8in>2
— &c. (182)

But we have in the numerator of (181)
Be~ P ds = — de~ P

and hence, differentiating (182) and substituting the result in
(181), we find

B sin z ds s e ’ '
dr= @, { Bs D =B —Bs
’ (1 —a) [cos® z 4 28’ sin? 2]} € + oint 2 [(l e~Byem R
| "LD’[(I —g'ﬁ")l e—ﬁo']
1.2sin'z
a® P
+1.2.3...nsin*'zD”[(1_e B )n e— R
+ e } (183)

To effect the differentiations expressed in the several terms of
this series, we take the general expression

A—e =By o —BY (—e =AY 4 Ine—AY
_ —(nt DB _ po—mper L P(P—1) G ppe g
=+ (e ne + —g1 ¢ &e.
where the upper sign is to be used when n is even, and the lower

sign when n is odd. Differentiating this n times successively,
we have

Dr[A—e=F)e= B =g [(n41)me =+ DA _pn ne—mBr' | &e ]
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by means of which, making n =1.2.8... successively, we
reduce (183) to the following form:

_ ofi 8in z d¢’ { —Bs of 2 e—2B4'_ g—BY
dr_(l-—a)[cos’z+ 2 ¢ sin*z]} ¢ +sin’z( ¢ )

+ l———;’:n‘z(?a’e-”" — 20,228 | ¢~ BY)

+ 12 3emts 2u’3':in¢z( 4oe—4PY _ 33,331 | 28 B2 _e—hY)

+ &e. } (184)

‘We have now to integrate the terms of this series, after having
multiplied each by the factor without the brackets. The inte-
grals are to be taken from the surface of the earth, where s=0,
to the upper limit of the atmosphere; that is, ¢ being the nor-
mal to any stratum (Art. 108), they are to be taken between the
limits ¢ = @ and ¢ = a 4 H, H being the height of the atmo-
sphere. Now, this height is not known ; but since at the upper
limit the density is zero and beyond this limit the ray suffers
no refraction to infinity, we can without error take the integrals
between the limits ¢ =a and ¢ = o, ie. between s =0 and
s=1. But we may make the upper limit of s also equal to in-

finity. For, by (176), 8 will not differ greatly from ‘-}, and conse-

quently will be a very large number, nearly equal to 800, as we

find from (167); hence for s=1 we have in (172) 3 = — >

(2.718..y™
which will be sensibly equal to zero, and consequently the same
as we should find by taking s = oo. Ilence the integrals may
be taken between the limits s =0 and s = o ; consequently,
also, according to (180), between the limits 8’ = 0 and s’ = o0.

Now, as every term of the series will be of the form

Asinzdse—nhs’  pds'e—nBs
[cos'z + 2 ¢'sin?2]t  [cot?z+ 257}

(185)

multiplied by constants, we have only to integrate this general
form. Let?be a new variable, such that
2t

cot’z 4 2¢ = 2B _ (i86)
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can also be written as follows :*

af
e w T y (1)
% af __’_‘:_'.
+ 2 - sin?z =)
V23 s
r=_-22F 3T ape “ (191)
1—a \+ 1.2  sinz ¢ “u +(3)
&
4 ot 5* __o:‘p:
123 sz @
+ &e.

113. The only remaining difficulty is to determine the func-
tion 4(n), (188). In the case of the horizontal refraction, where
cot 2 = 0 and therefore also 7= 0, this function becomes
independent of (n), and reduces to the well-known integralt

®
j; dte—tt— Kz’i (192)

* LarLACE, Mécanique Céleste, Vol. Iv. p. 186 (Bowpircr’s Translation); where,
however,% stands in the place of the more general symbol 3 here employed. This

form of the refraction is due to KrRaup, Analyse des réfractions astronomiques et ter-
restres, Strasbourg, 1799.
+ This useful definite integral may be readily obtained as follows. Put k =

j;m dt e—¢t. Then, since the deﬁnite.integnl is independent of the variable, we

]
also have k = j; doe™"", and, multiplying these expressions together,

k:=j;°du"“j;°du-" =j;°°j;°°dz dp e—(tt +v0)

the order of integration being arbitrary. Let
v =tu; whence dv ==t du

(for in integrating, regarding v as variable, ¢ is regarded as constant): then we have

-] -}
k’:ff du.d:.u—u<l+~-)=f°°du Zdt. te— @ + )
0 0
L4

=} (tan—'o0 —tan—! 0) = _

’“f“ 2(1+u=) 4

whence

® Vv
i —tt T
k_j; dte =
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where 7 = 8.1415926.... The expression for the horizontal
refraction is therefore found at once by putting 3y/z for 4 (n)
in every term of (191), and sin z = 1, namely:

e~

+2*aﬁe—'2"
s i
3 20—38a
= TN e (193)
4k
1.2.3

+ &e.

For small values of 7 that is, for great zenith distances, we
may obtain the value of the integral in (188) by a series of
ascending powers of 7. 'We have

f:dt«:“‘:ﬁmdte‘”—j;rdte‘“ (194)

The first integral of the second member is given by (192). The
second is

j;rdte“‘“=j; (l_t’+f—2 +&c) _

1.2.3
1 T 1 T
T

+ alp? e—4ab

—T—— — .
+125 1.2.3°

+ & (195)

Another development for the same case is obtained by the suc-
cessive application of the method of integration by parts, as
follows:*

fdte‘“ =te ¥ 4 2ft’dte_“

22
=te !} -g— et | %-ft*dte—“

* By the formula /;: dy = zy — f ydz, making always z = ¢ — %, and dy succes-
sively = dt, t2d, t*dt, &c.
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@y

+&c.)

whence, by introducing the limits,

- 2T @TYy  @TY
fdte tt—q "1'(1.;. +&7 2 &L 7+&c) (196)

As the denominators increase, these series finally become con-
vergent for all values of 7'; but they are convenient only for
small values.

For the greater values of 7, a development according to the
descending powers may be obtained, also by the method of
integration by parts, as follows:* We have

fdt e"“=—-l—e"“—§ dt e—tt
2t t’

_L—u “13dt_,,

-2t + 2’t'e + te
Hence

1.8 1.8.5
dat e—tt = - ..

f =1t 2T’ eTy ery T

1.8.5...2n—1)\ _1.3.5..@n4+1)™ dt __,
x (2 Tl)u } 2n+l r t!a+1 e (197)
The sum of a number of consecutive terms of this series is
alternately greater and less than the value of the integral. But
since the factors of the numerators increase, the series will at
last become divergent for any value of 7. Nevertheless, if we
stop at any term, the sum of all the remaining terms will be less than
this term ; for if we take the sum of all the terms in the brackets,
the sum of the remaining terms is

L1835, .@rilye dt
—_— 2.+| T tﬂn-{—l

* By the formulafz dy = zy — [y dz, making always dy = tdt e~ !, and z

successively — 1. tl" ,15’ &e.
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A _ 1+ (8 —1) kan_q
by bn—1+ (n—1) kby_g

By the preceding methods, then, the function 4(n) can be
computed for any value of 7. A table containing the logarithm
of this function for all values of T from 0 to 10, is given by
BesseL (Fundamenta Astronomie, pp. 86, 37), being an extension
of that first constructed by Kramp. By the aid of this table the
computation of the refraction is greatly facilitated.

114. Let us now examine the second term of (179.) This term
will have its greatest value in the horizontal refraction, when
2=90°, in which case it reduces to

afBe P sds [§s—2a (1 — e )]
(A—a)[2s—2 (1 —e—P]t

Moreover, the most sensible part of the integral corresponds to
small values of s, and therefore, since a is also very small, we
may put 2a (1 —e—F%) =2afs. The integral thus becomes

B (8—4ah) “ & gsg—te
2*(1—.;)(1—..;9)*’!; e

Now we have, by integrating by parts,

' * —pPs
fs*dse“‘:.—_—s; +§% s—tdse—m

and hence
® 3 - 1 ® 3 —
j; stdse ﬂ‘_—.Z_ﬁ-j; s~ ¥ dse—P

Putting §s = %, this becomes, by (192),

ﬁ—l} ﬁmdx e'"=-2179--\/§

Hence the term becomes

___a(83—4ep £
8(l—a) (1 —uﬂ)i 28
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Taking BEesseL’s value of h = 116865.8 toises* = 227775.7
metres, and the value of {="7993.15 metres (p. 141), we find by
(176) B =768.57. Substituting this and a = 0.000294211 (p. 146),
the value of the above expression, reduced to seconds of arc by
dividing by sin 17, is found to be only 0”.72, which in the hori-
zontal refraction is insignificant. This term, therefore, can be
neglected (and consequently also all the subsequent terms), and
the formula (191) may be regarded as the rigorous expression of
the refraction.

115. In order to compute the refraction by (191), it only re-
mains to determine the constants @ and 3. The constant a
might be found from (178) by employing the value of & deter-
mined by Brot by direct experiment upon the refractive power
of atmospheric air, but in order that the formula may represent
as nearly as possible the observed refractions, BEsseL preferred
to determine both @ and 8 from observations.t

Now, « depends upon the density of the air at the place of
observation, and is, therefore, a function of the pressure and
temperature; and 3, which involves /, also depends upon the ther-
mometer, since by the definition of ! it must vary with the tem-
perature. The constants must, then, be determined for some
assumed normal state of the air, and we must have the means
of deducing their values for any other given state. Let

P, = tho assumed normal pressuro,

T, = “ “ temperature,
p = the observed pressure,
T = & ‘“ temperature,

8, = the normal density corresponding to p, and 7,
8 = the density corresponding to p and «;

* Fundamenta Astronomize, p. 40.
1 It should be observed that the assumed expression of the density (177) may
represent various hypotheses, according to the form given to 8. Thus, if we put

B= ‘-;, we have the form (172) which expresses the hypothesis of & uniform tem-

perature. We may therefore readily examine how far that hypothesis is in error in
the horizontal refraction; for by taking the reciprocal of (167) we have in this case
B = 796.53, and hence with @ = 0.00029411 we find, by taking fifteen terms of the
series (193), r, = 39’ 64".5, which corresponds to Barom. 0*. 76, and Therm. 0° C.
This is 2’ 23".5 greater than the value given by ARGELANDER’s Observations (p. 141).
Our first hypothesis gave a result too small by more than 7’, and hence a true hypo-
thesis must be intermediate between these, as we have already shown from a con-
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then we have by (171)
8= _—8" .I_)_
1+e(r—1) p,
in which ¢ is the coefficient of expansion o6f atmospheric air, or

the expansion for 1° of the thermometer. If the thermometer is
Centigrade, we have, according to BESSEL,*

e = 0.0036438

From (178) it follows that « is sensibly proportional to the
density, and hence if we put

a, = tho value of a for the normal density 8,
we have, for any given state of the air,

P 205

¢ I+4e(r—1) Do (205)

in which for p and p, we may use the heights of the barometric

column, provided these heights are reduced to the same tem-
perature of the mercury and of the scales.

Again, if
I, = tho height of a homogencous atmosphere of the temperaturo
7,and any given pressurc and density,

then the height [ for the same pressure and density, when the
temperature is , is

=11+ e(r— )] (206)

The normal state of the air adopted by BesskL in the determi-
nation of the constants, so as to represent BRADLEY's observa-
tions, made at the Greenwich Observatory in the years 1750-
1762, was a mean state corresponding to the barometer 29.6
inches, and thermometer 50° Fahrenheit = 10° Centigrade; and
for this state he found

a, = 0.000278953

gideration of the law of temperatures. At the same time, we see that the hypothesis
of a uniform temperature is nearer to the truth than the first hypothesis, and we are
80 far justified in adhering to the form & = Jye — A with the modification of substi-
tuting a corrected value of 3.

* This value, determined by Besszy, from the observations of stars, differs slightly
from the value y3y more recently determined by Rupeera and REaxauLt by direct
experiments upon the refractive power of the air.
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-or, dividing by sin 17,
a, = 57".538

and
h — 116865.8 toises — 227775.7 metres.

For the constant [, at the normal temperature 50° F., BESSEL
employed-
1, = 4226.05 toises — 8236.73 metres.*

Since the strata of the atmosphere are supposed to be parallel to
the earth’s surface, BEsseL employed for a the radius of curva-
ture of the meridian for the latitude of Greenwich (the observa-
tions of Bradley being taken in the meridian), and, in accordance
with the compression of the earth assumed at the time when
this investigation was made, he took

a = 6372970 metres.
Hence we have

h—1 a
= ¢ -= 45- 4
8, ol 745.747

These values of a, and 8, being substituted for a and 3 in
(198), the horizontal refraction is found to be only about 1’ too
great, which is hardly greater than the probable error of the
observed horizontal refraction. At zenith distances less than
85°, however, BEssEL afterwards found that the refraction com-
puted with. these values of the constants required to be multi-
plied by the factor 1.003282 in order to represent the Konigsberg
observations. ;

116. By the preceding formule, then, the values of the con-
stants a and 2 can be found for any state of the air, as given by
the barometer and thermometer at the place of observation, and
then the true refraction might be directly computed by (191).
But, as this computation would be too troublesome in practice,
the mean refraction is computed for the assumed normal values
of @ and B3, and given in the refraction tables. From this mean

* According to the later determination of REanauLT which we have used on p. 143,
we should have /,— 8286.1 metres. The difference does not affect the value of
BesseL’s tables, which are conslructed to represent actual observations.

Vor. L.—11
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refraction we must deduce the true refraction in any case by
applying proper corrections depending upon the observed state
of the barometer and thermometer. For facility of logarithmic
computation, BEsseL adopted the form

r_r°(p)A{l+t f—r)} @

in which r, is the tabular refraction corresponding to p, and z,,
and r is the refraction corresponding to the observed p and r.
Let us see what interpretation must be given to the exponents
A and A. If the pressure remained p,, the refraction correspond-
ing to the temperature = would be

d'r (r — 1)

_(’—°)+df' 1.2

+ &e.

or, with sufficient precision,
1 dr
14-.5 (e~
T { --]-’_o dr(r ro)}

In like manner, if the temperature were constant, and the pres-
sure is increased by the quantity p — p,, the refraction would

become nearly
1 dr
{ + ’To TP @ - p) }

ITence, when both pressure and temperature vary, we shall have,
very nearly,

{ +:o Z;(P Po)} { +l d——'-.(r—ro)} (208)

Novw, puttmo'p— in (207) under the form 1 + ,anddevelop—

Do
ing by the binomial theorem, we have

r=r,{l+§.(p-—p,)+&c. } X {l—lc(r—ro)-}-&o.}

Therefore, neglecting the smaller terms, we must have

A= 4,1 dr (209)
ro dp 2r, dr
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to determine which we are now to find the derivatives of (191)
relatively to p and . Put

_ a8
z=— (210)
and g, = (1), g, = 2W(2), g = 314(8), &c., or in general
=1
g.=n * ¥n) (211)
then, if we also put
— —s z -2 -
Q=ze¢ "¢, + T3¢ ’q,.....-l-l-2 ..... ”e q.+ &e. (212)
the formula (191) becomes
. 2
1— = gin? z. (213
(1 —o) r=sin'z \/; Q )

in (191) are sensibly the

in which, since the variations of i—

same as those of a, we may regard 1 —a as constant. Differen-
tiating this, observing that @ varies with both p and r, while 8
varies only with r, we have

dr . 2 dQ
(1—a)— =sin"z4/>-—
d d
P ; 4 B ap . @18)
(1 —a) - =sin*z 71_._( - )E%.E:

In differentiating @, it will be convenient to regard it as a func-
tion of the two variables z and 8, the quantities g,, ¢,, &c. vary-
ing only with 8. We have, since 8 does not vary with p,

Q@ _dQ dr (215)

dQ _dQ dxr dQ dB
dr ~ dr dr :i; dr (216)

From (212) we find
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dQ 1—2z ’
= "z \
in which
B A —3
=z¢ qtyge 2+t 7, 5¢ 3t
Also,
‘&_ -3 dgl z* — 22 dqs
dﬁ_:ce -7ﬁ+ﬁe d3+&c'

in which we have generally, by (211),

dg, _ =5 ds() 4T
d3 dT " dB

But by (200), in which %, = 4(n), we have

In—1 tn~—1
n 3 %ﬂ = 2Tq‘= —n
and by (187)
adT T
a2
whence
dq‘ Tl !n;-l
ST Y
— go_t’_i ng— cot 2 .
2 " 2428

(217)
(218)

(219)

Substituting the values of this expression for n =1, 2, 8, &c. in

(219), we have

:_Z_Q __cot?z
g~ 2

cot z x*

T 2v2p

' z
(xe"g,-[-l—z—ée-"Zq, + i3 3e-“’3q, + &c)

-z T 2 =0 )
(xe +1—.-—2-e 2’+1'2.3e 8 4 &e.

The first series in this expression = @’. The second, when

e—2, e—%, §c. are developed in series, becomes

1 =T
z4+x +x’+&c._1_x
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The true refraction then takes the form
r—=af4yrtanz (223)

The quantity here denoted by g is the ratio of the observed and
normal heights of the barometer, both being reduced to the same
temperature of the mercury and of their scales. First, to correct
for the temperature of the scale, let 4@, 6, or 6™ denote the ob-
served reading of the barometer scale according as it is graduated
in Paris lines, English inches, or French metres. The standard
temperatures of the Paris line is 13° Réaumur, of the English inch
62° Fahrenheit, and of the French metre 0° Centigrade; that is,
the graduations of the several scales indicate true heights only
when the attached thermometers indicate these temperatures
respectively. The expansion of brass from the freezing point to
the boiling point is .0018782 of its length at the freezing point.
If then the reading of the attached thermometer is denoted
either by r/, f’, or ¢/, according as it is Réaumur’s, Fahrenheit’s,
or the Centigrade, the true height observed will be (putting s =
0.0018782)

14 =7 14~ (f'—32) 14 —.c
. 3.0 y b, 180 y O™, 100
or
p 80 4 r's b(c).180 + (f' — 32)3’ b 100+c s (224)
80 + 135’ 180 4 30s

where the multipliers 1 + é%r’, &c. evidently reduce the reading
to what it would have been if the observed temperature had been
that of freezing, and the divisors 1+ 8—'0 - 18, &c. further reduce

these to the respective temperatures of graduation, and conse-
quently give the true heights.

This true height of the mercury will be proportional to the
pressure only when the temperature of the mercury is constant.
‘We must, therefore, reduce the height to what it would be if the
temperature were equal to the adopted normal temperature, which
is in our table 8° Réaumur =50° F.=10° C. Now, mercury

expands L of its volume at the freezing point of water, when
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its temperature is raised from that point to the boiling point of

water. Hence, putting ¢ = &, the above heights will be reduced

to the normal temperature by multiplying them respectively by
the factors

. 80 + 8¢ 180 + 18¢ 100 + 10¢
80 +r'q’ 180 + (f' —32)¢ 100 4 c'q

The normal height of the barometer adopted by BesseL was 29.6
inches of Bradley’s instrument, or 333.28 Paris lines; hut it after-
wards appeared that this instrument gave the heights too small
by % a Paris line, so that the normal height in the tables is 333.78
Paris lines, at the adopted normal temperature of 8° R. Reducing
this to the standard temperature of the Paris line =13° R., we
have ‘
80 - 8s

80 + 13s (226),

b, — 833.78
In comparing this with the observed heights, the ¢ and 6™ must
be reduced to lines by observing that one English inch = 11.2595
Paris lines, and one metre = 443.296 Paris lines. Making this

reduction, the value of g = ;7: is found by dividing the product

of (224) and (225) by (226). The result may then be separated
into two factors, one of which depends upon the observed height
of the barometric column, and the other upon the attached ther-
mometer; so that if we put

b 80 4 8¢
T 333.78 80 4 8s

11.2595 80 4 13s 180 + 18¢

= bW . . . =
333.78 80 4 83 180 - 30s

443.296 80 4 13s 100 4+ 10¢

— p™ . .
333.78 ' 80 + 83 100

and
_ 804 r's 180 4 (f'—82)s _ 100 4 ¢'s
T80 4 r'g 180 4 (f'—382)¢ 100 Fc'g /
we shall have 3==BT, or .
. logd=1logB { logT (228)
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The quantity y would be computed directly under the form

=1
146(r—1)

if 7, were at once the freezing point and the normal temperature
of the tables; for ¢ is properly the expansion of the air for each
degree of the thermometer above the freezing point, the density
of the air at this point being taken as the unit of density. But
if the normal temperature is denoted by r,, that of the freezing
point by z,, the observed by r, we shall have

y=lteG—mn)
l4e(r—m7)

4

an expression which, if we neglect the square of ¢, will be reduced
to the above more simple one by dividing the numerator and
denominator by 1+ e(r,—7,). BEsseL adopted for 7, the value
50° F. by BraDLEY’s thermometer; but as this thermometer was
found to give 1°.25 too much, the normal value of the tables is
7,=48°.75 F. Hence, if 7, f, or ¢ denote the temperature indi-
cated by the external thermometer, according as it is Réaumur,
Fahr., or Cent., we have*

__ 180 4 16.75 X 0.36438
T 180 4 #r X 0.36438

180 + 16.75 X 0.36438
T 180 + (f — 82) X 0.36438 (229)

180 4 16.75 X 0.36438
T 180 4 gc X 0.36438

The tables constructed according to these formule give the
values of log B, log T, and log y, with the arguments barometer,
attached thermometer, and external thermometer respectively,
and the computation of the true refraction is rendered extremely
gimple. An example has already been given in Art. 107.

118. In the preceding discussion we have omitted any con-
sideration of the hygrometric state of the atmosphere. The

* Tabule Regiomontane, p. LXIL
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refractive: power of aqueous vapor is greater than that of at-
mospheric air of the same density, but under the same pressure
its density is less than that of air; and Laprrace has shown that
“the increase of the greater refractive power of vapor is in a
great degree compensated by its decrease of density.”*

119. Refraction table with the argument truc zenith distance.—When
the true zenith distance { is given, we may still find the refrac-
tion from the usual tables, or Col. A of Table IL, where the
apparent zenith distance 2z is the argument, by successive ap-
proximations. For, entering the table with ¢ instead of z, we
shall obtain an approximate value of r, which, subtracted from ¢,
will give an approximate value of z; with this a more exact
value of r can be found, and a second value of z, and so on, until
the computed values of r and z exactly satisfy the equation 2=
¢ —r. But it is more convenient to obtain the refraction directly
with the argument {. For this purpose Col. B of Table II. gives
the quantities @/, A’, ’, which are entirely analogous to the a, 4,
and A, so that the refraction is computed under the form

r=ad 4y tan ¢ - (230)

where g and y have the same values as before. :

The values of a’, A/, and A’ are deduced from those of a, A,
and 2 after the latter have been tabulated. They are to be so
determined as to satisfy the equations

L
af4ritanz =o' 34N tan ¢ (231
:={—d34 X tan ¢ (232)

and this for any values of 3 and y. Let (2) denote the value of 2
which corresponds to ¢ when 3=1, y=1; that is, when the
refraction is at its mean tabular value. The value of (2) may be
found by successive approximations from Col. A.,as above ex-
plained. Let (@), (4), (4), and (r) denote the corresponding
values of a, A, A, ». We have

(r)=(a)tan () =o' tan¢
() =% —a' tan¢

whence, by (232),

* Méc. Cél. Book X
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2=(2) —d'tan{ (34y¥ —1)
But, taking Napierian logarithms, we have
L(B4yY) = A'13 + Xy
and hence, ¢ being the Napierian base,
BAYN = e4B+NIy =1 4 (4’18 4+ X1p) + &e.

where, as 3 and 7 differ but little from unity, the higher powers
of A'l3 + X'ly may be omitted. Ilence

=@ —@"[A+21ly]
Now, taking the logarithm of (231), we have
l(atanz) + Al + Ay =1(a' tanQ) + A"l 4+ Xy

The first member is a function of z, which we may develop as a
function of (2); for, denoting this first member by f2, and putting

y=—mM1z+ 2]
we have z = (z) + y, and hence

ar ()
d(2)

®where we may also neglect the higher powers of y. But since
f(2) is what fz becomes when z = (z), and consequently 4 = (4),
A= (4), we have

FE)=1[(a) tan ()] + ()12 + V) Iy

df (2) dl[m tan ()] _ d[(@tan(] _ 1 d()
d(z) ©) (a)tan()d(z) ( ) ()

2=l +y=r@+ -y + &e,

Hence we have
F2=11) tan @1+ () 18+ W 1 — 30 W18+ 217]
=I[o'tan] 4+ A"IB 4+ X1y

or, since (@) tan (2) = a’ tan J
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d r
{1+d§’§}m+r{ +ra =i+ @

Since this is to be satisfied for indeterminate values of 3 and 7,
the coeflicients of {3 and Iy in the two members must be equal;
and therefore

= d(r) ' (283)

and also

__¢.Atan ()
Y=o

All the quantities in the second members of these formuls may
be found from Column A of Table IL., and thus Column B may
be formed.*
If we put
k, . Iﬁ‘lrkl
we shall now find the refraction under the form

r=Kk'tan ¢

120. To find the refraction of a star in right ascension and decli-
nation.

The declination ¢ and hour angle ¢ of the star being given,
together with the latitude ¢ of the place of observation, we first
compute the true zenith distance £ and the parallactic angle ¢
by (20). The refraction will be expressed under the form

r==ktan¢
in which
k' —_ “lﬁAI rA'
The latitude and azimuth being here constant (since refrac-
tion acts only in the vertical circle), we have from (50), by put-

* See also Besskr, Astronomische Untersuchungen, Vol. I, p. 159.
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ting dp =0, d4 = 0,d{ = r = k' tan & dl = — da, (@ = star's
right ascension), v

dd = — k' tan { cos ¢
. - co8 8da = — k' tan { 8in ¢ } (234)

which are readily computed, since the logarithms of tan { cos ¢
and tan ¢ sin ¢ will already have been found in computing ¢ by
(20). The value of log A’ will be found from Table II. Column
B, with the argument ¢.

The values of dd and da thus found are those which are to be
algebraically added to the apparcnt declination and right ascen-
sion to free them from the effect of refraction.

The mean value of %’ is about 57/, which may be employed
when a very precise result is not required.

DIP OF THE HORIZON.

121. The dip of the horizon is the angle of depression of the
visible sea horizon below the true horizon, arising from the ele-
vation of the eye of the observer above the level of the sea.

Let CZ, Fig. 17, be the vertical line of an observer at 4,

whose height above the level of the
Fig. 17. - sea is AB. The plane of the true ho-

i rizon of the observer at A is a plane

at right angles to the vertical line

" n (Art. 8). Let a vertical plane be
B passed through CZ, and let BTD be

the intersection of this plane with the

a carth’s surface regarded as a sphere,
¢ AH its intersection with the horizon-

tal plane. Draw ATH' in this plane,

tangent to the circular section of the

> carth at 7. Disregarding for the pre-

sent the eftect of the atmosphere, 7" will
be the most distant point of the surface visible from 4. If we
now conceive the vertical plane to revolve about CZ as an axis,
AH will generate the plane of the celestial horizon, while 4 H’
will generate the surface of a cone touching the earth in the
small circle called the visible horizon; and the angle HAH'
will be the dip of the horizon.
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122. 7o find the dip of the horizon, neglecting the atmospheric refrac-
tion. Let

& = tho height of the eye — AB,
a = the radius of the earth,
D = the dip of the horizon.

"We have in the triangle CAT, ACT = HAH' = D, and hence

AT
tanD—-ﬁ,-

By geometry, we have

AT=VABX AD=Vz(Za+2)

whence

w0 ~LEEEE (1]

As z is always very small compared with a, the square of the
fraction % is altogether inappreciable: so that we may take

simply
L]

tan D= 4|22 (285)

128. Tb find the dip of the horizon, having regard to the atmospheric
refraction.

The curved path of a ray of light from the point 7, Fig. 18,
to the eye at A, is the same as that
of a ray from A to T'; and this is Fig. 18.
a portion of the whole path of a
ray (as from a star S) which passes
through the point 4, and is tangent
to the earth’s surface at 7. The &
direction in which the observer at &~ %
A sees the point T is that of the
tangent to the curved path at 4, or
AH'’; the true dip is therefore the
angle HAH', and is less than that found in the preceding article.
It is also evident that the most distant visible point of the earth’s

Q h\ N
t
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surface is more remote from the observer than it would be if
the earth had no atmosphere.

Now, recurring to the investigation of the refraction in Art.
108, we observe that the angle HAH' is the complement of
the angle of incidence of the ray at the point 4, there denoted
by ¢; and it was there shown that if ¢, g, and ¢ are respectively
the normal, the index of refraction, and the angle of incidence
for a point elevated above the earth’s surface, while a, g, and z
are the same quantities at the surface, we have

gursini =ap8inz
But in the present case we have z = 90°; and hence, putting

D' = the true dip = 90° — i

g =a+=x
we have
-1
gini—cos D'=" 2 =£‘L(1+i)
s a2 I a

Developing and neglecting the square of ; as before,
r=t (1 %
cos D' = #(1 a)- (236)

which would suffice to determine D’ when g, and g have been
obtained from the observed densitics of the air at the observer
and at the level of the sea. But, as D’ is small, it is more con-
venient to determine it from its sine; and we may also intro-
duce the density of the air directly into the formula by putting
(Art. 110),

s |1+ 4ko
r " N 144k

Substituting the value of @ from (178), namely,

2k,
[ Rp—
1+ 443,

we may give this the form
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i)

={1—2¢(1_.‘%}_*

which, by neglecting the square of the second term, gives
B A
Botie(1-4)

Hence, still neglecting the higher powers of a and -?:—-, as well as
their product, we have

a

8in D' =V 1—cos’1)’=\/ 2—1.—20(1-——:—)} (287)
o

which agrees with the formula given by Laprace, Méc. CA.
Book X.

For an altitude of a few feet, the difference of pressure will
not sensibly affect the value of D’, and may be disregarded,
especially since a very precise determination of the dip is not
possible unless we know the density of the air at the visible hori-
zon, which cannot usually be observed. We may, however,
assume the temperature of the water to be that of the lowest
stratum of the air, and, denoting this by 7, while r denotes the
temperature of the air at the height of the eye, we have [mak-
ing p = p, in (171)], approximately,

3 1

_zf:m:l—t(r_%)

in which for Fahrenheit’s thermometer ¢ = 0.002024. IIence

sin D’ = \/‘1:;{ 1—Zae(r—1) }}

ae(‘l‘—‘l’o)

= sinD { 1—
sin* D

where D is the dip, computed by (235), when the refraction is
neglected, the sine of so small an angle being put for its tan-
gent. If we substitute the values a = 0.00027895, sin D =
D sin 1”7, and ¢ = 0.002024, this formula becomes
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_ 24021(r — 1)

D' =
D D .

in which D is in seconds. If D is expressed in minutes in the
last term, it will be sufficiently accurate to take

T—1,

D'= D —400 X

(238)

This will give D’ = D when t = 7, as it should do, since in
that case the atmosphere is supposed to be of uniform deusity
from the level of the sea to the height of the observer. If
t < 7, we have D’ > D. In extreme cases, where 7 is much
greater than z,, we may have D’ < 0, or negative, and the visible
horizon will appear above the level of the eye, a phenomenon
occasionally observed. I know of no observations sufliciently
precise to determine whether this simple formula, deduced from
theoretical considerations, accurately represents the observed
dip in every case.

124. If, however, we wish to compute the value of D’ for a
mean state of the atmosphere without reference to the actually
observed temperatures, we may proceed as follows: In the equa-
tion above found,

cos D' =

Mo a
g a+zx

we may substitute the value

()=

which is our first hypothesis as to the law of decrease of density
of the strata of the atmosphere, Art. 109. This hypothesis will
serve our present purpose, provided n is so determined as to
represent the actually observed mean horizontal refraction. We
have, then,

cos I/ =(1 + g’-)_;*_:i

and developing, neglecting the higher powers of i:,
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n

n+41

x
cos D'=1— .=
a

st'._\ln_*_l T_ta. D\/:

, n
D =D\/n—-——+1

To determine 7, we have by (160), reducing 7, to seconds,

or

4k
 (ro8in1")?

where, for Barom. 0~.76, Therm. 10°C., which nearly represent
the mean state of the atmosphere at the surface of the earth, we
have 444, = 0.00056795, and r, = 34’ 30"’ (which is about the
mean of the determinations of the horizontal refraction by dif-
ferent astronomers); and hence we find '

= 5.639,

D'=D — .0784D (239)

The coefficient .0784 agrees very nearly with DELAMBRE’S value

.07876, which was derived from a large number of observations

upon the terrestrial refraction at different seasons of the year.
To compute IV directly, we have

0.9216 2 —
D= 8in 1”7 1/:t

If z is in feet, we must take a in feet. Taking the mean value

a = 20888625 fect, and reducing the constant coefficient of 1/,
we have

D' = 58".82 1/ in foet. (240)

Table XI., Vol. II., is computed by this formula.
YVor. L—12
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125. To find the distance of the sea horizon, and the distance of an
object of known height just visible in the horizon.—The small portion
TA, Fig. 19, of the curved path of a ray of

Fig. 19. light, may be regarded as the arc of a circle;
and then the refraction elevates A as seen

" from 7" as much as it elevates T as seen

: from A. Drawing the tangent T'P, the ob-

server at 7' would see the point 4 at P;
and if the chord T'A were drawn, the angle
PTA would be the refraction of 4. This
refraction, being the same as that of T as
seen from A, is, by (289), equal to .0784.D. In the triangle
TPA, TAP is so nearly a right angle (with the small elevations
of the eye here considered) that if we put

c

x,=AP
we may take as a sufficient approximation
x,=TA X tan PTA = a tan D X .0784 tan D
But we have a tan? D = 2z, and hence

x, = .15682
Putting
d = tho distance of the sca horizon,
we have

PT=/(2CB + PB) X PB
or, nearly,

d =1V2a(z + x,) = V' 2.3186ax

If z is given in feet, we shall find d in statute miles by dividing
this value by 5280. Taking a as in the preceding article, we
find

V231862 _ 1 49q
5280
and, therefore,
d (in statute miles) = 1.817 }/x in feet. (241)

If an observer at A’ at the height A’B’ = 2’ sees the object
A, whose height is z, in the horizon, he must be in the curve de-
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scribed by the ray from A which touches the earth’s surface at
7. The distance of A’ from T will be = 1.817 1/z’, and hence

the whole distance from A to A’ will be = 1.817 (Vz + V).
The above is a rather rough approximation, but yet quite as
accurate as the nature of the problem requires; for the anoma-
lous variations of the horizontal refraction produce greater
errors than those resulting from the formula. By means of this
formula the navigator approaching the land may take .advantage
of the first appearance of a mountain of known height, to deter-
mine the position of the ship. For this purpose the formula
(241) is tabulated with the argument ‘height of the object or
eye;” and the sum of the two distances given in the table, cor-
responding to the height of the object and of the eye respect-
ively, is the required distance of the object from the observer.

126. To find the dip of the sea al a given distance from the observer.
—By the dip of the sea is here understood the apparent depres-
sion of any point of the surface of the water nearer than the
visible horizon. Let T, Fig. 20, be such a
point, and A the position of the observer. P
Let TA’ be a ray of light from 7] tangent P
to the earth’s surface at 7, meeting the ver- L—
tical line of the observer in 4’. Put

Fig. 20.

D" = the dip of T as scen from 4,

d = the distance of T in statute miles,
x = the hcight of the observer’s eye in fect — AB,
z' = A'B.

‘We have, by (241),
d 2
- ( 1.317 )

and the dip of T, as seen from A’, is, therefore, by (240),
= 58".82 /=’ = 44".66 d.

Now, supposing the chords T'4, T'A’ to be drawn, the dip of T
at 4 exceeds that at A’ by the angle AT4’, very nearly, and
we have nearly
AA' 1 r—2z
sle ATA = —— =
angle T4 sn "~ @280 dsinl”
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discussed in connection with the theory of occultations in
Chapter X. :

The angular semidiameter of a spherical body is the angle
subtended at the place of observation by the radius of the disc.
I shall here call it simply the semidiameter, and distinguish the
linear semidiameter as the radius.

Let O, Fig. 21, be the centre of Fig. 21.
the earth, A the position of an ob-
server on its surface, M the centre
of the observed body; OB, AB’,
tangents to its surface, drawn from
O and A. The triangle OBM re-
volved about OM as an axis will de-
scribe a cone touching the spherical
body in the small circle described
by the point B, and this circle is the
disc whose angular semidiameter at
O is MOB. Put

S = the geocentric semidiameter, 0B,
S’ = the apparent somidiamcter, M4 B’,
4, 4" = tho distances of the centre of the body from the centre of
the earth and the place of observation respectively,
a = the cquatorial radius of the earth,
a’ = the radius of tho body,

then the right triangles OMB, AMB’ give

~

’

sin ' =L (244)

Al

sin § =

L8

But if
= = the equatorial horizontal parallax of the body,

we have, Art. 89,

- a
sinmw = —
4
and hence
. a . P B
sin § = — sin = gin 8’ = —sin S (245)
a 4’

or, with sufficient precision in most cases,

§=%x s =2g (246)
a 4
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The geocentric semidiameter and the horizontal parallax have

’

. a
therefore a constant ratio = a For the moon, we have

al
— = 0272936 (247)

as derived from the Greenwich observations and adopted by
HaNseN (Tables de la Lune, p. 39).

If the body is in the horizon of the observer, its distance from
him is nearly the same as from the centre of the earth, and hence
the geocentric is frequently called the horizontal semidiameter;
but this designation is not exact, as the latter is somewhat greater
than the former. In the case of the moon the difference is
between 0.1 and 07.2.  See Table XII.

If the body is in the zenith, its distance from the observer is
less than its geocentric distance by a radius of the earth, and the
apparent semidiameter has then its greatest value.

The apparent semidiameter at a given place on the earth’s
surface is computed by the second equation of (245) or (246), in

which the value of % is that found by (104) ; so that, putting z =

the true (geocentric) zenith distance of the body, ¢’ = the appa;
rent zenith distance (affected by parallax), A = its azimuth,
¢ — ¢’ the reduction of the latitude, we have, (by (111) and (104),

r= (¢—¢:)cosA
'sin & — sin § P& =1 (248)
sin (X —7)

129. This last formula is rigorous, but an approximate formula
for computing the difference S’ — 8 will sometimes be convenient.
In (108) we may put

cos (¢ — o)
cosycos} (' —0)

without sensible error in computing the very small difference in
question ; we thus obtain
A'

Z:l—psinxcos B¢ +9—n
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Putting
m=psinzcos [} (X' + 2)—7] (249)
we have
-_—_1_=l+m+m’+&c.
1—m

TN

and hence, since the third power of m is evidently insensible,
8'— 8= 8m 4 Sm? (250)

which is practically as exact as (248). "The value of ¢’ required
in (249) will be found with sufficient accuracy by (114), or

' —L=prein(f —yp)

The quantity S’ — S is usually called the augmentation of the
semidiameter. It is appreciable only in the case of the moon.

130. If we neglect the compression of the earth, which will
not involve an error of more than 0’.05 even for the moon,* we
may develop (250) as follows. Putting p =1 and y =0 in (249),
we may take

m=sinncos } (' +0)
=sinzcos [ — } ({' —0)]
=s8in n cos {' 4+ 4 sin = 8in (' — ) sin ¢
= 8in = cos £’ 4 % sin*x 8in?{’

which substituted in (250) gives, by neglecting powers of sin
above the second,

S'— 8 = Ssinwcos '+ }Ssin*zsin?¢’ 4 Ssin*x cos?{’
= Ssin = cos ' 4+ 3 Ssin*z 4 } Ssin*x cos?{’

But we have

* The greatest declination of the moon being less than 30°, it can reach great
altitudes only in low latitudes, where the compression is less sensible. A rigorous
investigation of the error produced by neglecting the compression shows that the
mazimum error is less than 0”.06.
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and if we put

h= % sin1”,  logh = 5.2495

we have sin 7 = k8, which substituted above gives the follow-
ing formula for computing the augmentation of the moon’s
semidiameter:

S —S=hS*co8'4+ 2 h*S*+ § h* S*cos*{’ (251)

ExampLE.—Find the augmentation for ¢’ = 40°, § =16’ 0"
= 960", '

log S* 5.9645 log S* 8947 Ist term = 12”54
log h 5.2495 log#h* 0198 = 24 <« — 0.l4
log cos ¢’ 9.8843 log 2d term 9.145 84 « = 0.08
log 1st term 1.0983 log cos*l’  9.769 S§'—8 =12.76

log 3d term 8.914

The value of 8§’ — 8 may be taken directly from Table XII. with
the argument apparent altitude = 90° — ¢’.

181. If the geocentric hour angle (f) and declination (J) are
given, we have, by substituting (137) in (245),

s e sin (8' — p).
sin S = 8ln Sm (252)

for which y and ¢’ are to be determined by (134) and (186), or
with sufficient accuracy for the present purpose by the formule

tan =M.
cos t

p = 8in ¢’ 8in (y — &)

¢ — 8 = .
sin y

182. To find the contraction of the vertical semidiameter of the sun
or moon produced by atmospheric refraction.

Since the refraction increases with the zenith distance, the
refraction for the centre of the sun or the moon will be greater
than that for the upper limb, and that for the lower limb will be
greater than that for the centre. The apparent distance of the
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limbs is therefore diminished, and the whole disc, instead of
being circular, presents an oval figure, the vertical diameter of
which is the least, and the horizontal diameter the greatest.
The refraction increasing more and more rapidly as the zenith
distance increases, the lower half of the disc is somewhat more
contracted than the upper half.

The contraction of the vertical semidiameter may be found
directly from the refraction table, by taking the difference of
the refractions for the centre and the limb.

ExaMpLE.2-The true semidiameter of the moon being 16’ 0",
and the apparent zenith distance of the centre 84°, find the con-
traction of the upper and lower semidiameters in a mean state
of the atmosphere (Barom. 80 inches, Therm. 50° F.). We tind
from Table L

For apparent zen. dist. of contre, 84° ¢/ Refr. =8 28".0

“ approx. “ upper limb, 83 44 “« =8 9.4

« “ “ lower ¢ 84 16 “« =848.1
Ience,

Approx. contraction upper semid. =8’ 28”.0 — 8’ 9”.4—=18".6
“ “ lowor “ =28 48.1—828.0=20.1

These results are but approximate, since we have supposed the
apparent zenith distance of the limb to difter from that of the
centre by the true semidiameter, whereas they diftfer only by the
apparent or contracted semidiameter. Hence we must repeat as
follows:

App. zen. dist. upper limb = 83° 44’ 18”.6 Refr.—= 8" 9".7
“ “ lower « =84 1539 .9 “« =847 .7

Contraction of upper semid. = 8’ 28”.0 — 8 9".7 =18".3
«“ lower « =8 47.7—828.0=19.7

Observations at great zenith distances, where this contraction
is most sensible, do not usually admit of great precision, on
account of the imperfect definition of the limbs and the uncer-
tainty of the refraction itsclf. It is, therefore, sufficiently exact
to assume the contraction of cither the upper or lower semi-
diameter to be equal to the mean of the two. In the above
example, which offers an extreme case, if we take the mean
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The small triangle PFP’ may be regarded as rectilinear and
right-angled at F'; whence

FP'= PP’ X cosgq
or
S, cos’q

48,= 48, 27
1

If we put S, for S, in the second member, the resulting value of
48, will never be in error 0””.2 for zenith distances less than 85°,
and it suffices to take

48, = 485, cos*q (258)

This formula is sufficiently exact for all purposes to which we
shall have occasion to apply it.

134. To find the contraction of the horizontal semidiameter.—The
formula (253) for ¢ = 90° makes the contraction of the hori-
zontal semidiameter = 0. This results from our having assumed
that the portions of vertical circles drawn through the several
points of the limb are parallel, and this assumption de-
parts most from the truth in the case of the two ver-
tical circles drawn through the extremities of the
horizontal diameter. To investigate the error in this
case, let ZM, Fig. 23, be the vertical circle drawn
through the centre of the body, ZM'’ that drawn
through the extremity of the horizontal semidiameter
MM’. In consequence of the refraction, the points M
and M’ appear at N and N’. If we denote the zenith ¥ 4
distances of M and N by ¢ and 2, those of M’ and N’
by ¢’ and 2/, the refraction MN may be expressed as a func-
tion cither of z or of £, Art. 107, and we shall have

Fig. 23.
z

r—==ktanz = k' tan ¢

where £ and &’ are given by the refraction table with the argu-
ments z and {. The zenith distance of the point M’ differs so,
little from that of M that the values of & and A’ will be sensibly
the same for both points, and we shall have for the refraction
M'N’,

r'=ktan2' = k’tan '’
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These two equations give

tanz  tan{
tan2 tan ¢’

But if the triangle ZNN’ is right-angled at IV, we have

cos Z = tan 2
tan 2’
and hence, also,
co8 Z = tan ¢
tan g’

Therefore the triangle ZMM' is also right-angled, and it gives .

tanS _ tan S’
sin(z+r) sinz

tan Z =

in which S= MM’ and S’=NN’. Hence

tan S _ sin(z4 1)
tan S’ sinz

= cos r 4 sin r cot 2

or, very nearl
H b

% =1+4+rsinl"cotz=1 4 ksin1”
Hence the contraction of the horizontal semidiameter is ex-
pressed by the following formula:

S— 8 ==8ksinl"

In the zenith, the mean value of log k is 1.76156; at the zenith
distance 85°,it is 1.71020. For 8’ = 16/, therefore, the contrac-
tion found by this formula is 0’/.27 in the zenith, and 0.24 for
85°. Thus, for all zenith distances less than 85° the contraction of
the horizontal semidiameter is very nearly constant and equal to one-
Jourth of a second.

When the body is in the horizon, we have £ = rcot 2 =0,
and hence 8§ — S’ = 0, which follows also from the sensible
parallelism of the vertical circles at the horizon.
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REDUCTION OF OBSERVED ZENITH DISTANCES TO THE CENTRE OF
THE EARTH.

135. It is important to observe a proper order in the applica-
tion of the several corrections which have been treated of in this
chapter.

The zenith distance of any point of the heavens observed with
any instrument is generally affected with the index error and
other instrumental errors. These errors will be treated of in
the second volume; here we assume that they have been duly
allowed for, and we shall call “observed” zenith distance that
which would be obtained with a perfect instrument, and shall
denote it by 2.

In all cases the first step in the reduction is to find the refrac-
tion r (=a34y*tan z) with the argument 2, and then z 4 r is the
zenith distance freed from refraction.

1st. In the case of a fixed star,

=z4r

is at once the required geocentric zen. dist.

2d. In the case of the moon, the zenith distance observed is
that of the upper or lower limb. If § is the geocentric and S’
the augmented semidiameter found by Art. 128, 129, or 180,

U=z+4r=+8

is the apparent zenith distance of the moon’s centre freed from
refraction, and aftected only by parallax, and, consequently, it is
that which has been denoted by the same symbol in the discus-
sion of the parallax. With this, therefore, we compute the
parallax in zenith distance, {’ — {, by Art. 95, and then '

(== =0

is the required geocentric zenith distance of the moon’s centre.
To compute S’ by (248), (250), or (251), we must first know ¢’;
but it will suffice to employ in these formule the approximate
value /=z2+r =+ 8.
We can, however, avoid the computation of 8’, when extreme
precision is not required, by computing the parallax for the
zenith distance of the limb. Thus, putting ¢’ = 2z 4 r, and
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computing ¢’ — { by Art. 95, the quantity { =¢' — (' — &) is
the geocentric zenith distance of the limb; and therefore, ap-
plying the geocentric semidiameter, { = S is the required geo-
centric zenith distance of the moon's centre. This process
involves the error of assuming the horizontal parallax for the
limb to be the same as that for the moon’s centre. It can easily
be shown, however, that the error in the result will never amount
to 0’7.2, which in most cases in practice is unimportant. The
exact amount will be investigated in the next article.

3d. In the case of the sun or a planet, when the limb has been
observed, the process of reduction is, theoretically, the same as
for the moon ; but the parallax is so small that the augmentation
of the semidiameter is insensible. We therefore take

U'=z+4+r+8

and then, computing the parallax by Art. 96, or even by Art. 90,
¢ =1 — (¢’ — Q) is the true geocentric zenith distance.

If a point has been referred to the sea horizon and the
measured altitude is H, then, D being the dip of the horizon,
k= H — D is properly the observed altitude, and z=90° — '
the observed zenith distance, with which we proceed as above.

136. The process above given for reducing the observed zenith
distance of the moon’s limb to the geocentric zenith distance of
the moon’s centre, is that which is usually employed; but the
whole reduction, exclusive of refraction, may be directly and
rigorously computed as follows. Putting

¢’ = z 4 r = the apparent zenith distance of the moon’s limb
PP
corrected for refraction,
= the geocentric zenith distance of the moon’s centre,

then, 8’ being the augmented semidiameter, we must substitute
¢’ = 8’ for {’ in the formule for parallax, and, by (101), we
have

fsin (2’ + 8y =sin { — p sin = cos (¢ — ¢') tan y
feos (2" = 8') =cos s — psinrcos (¢ —¢)

Multiplying the first of these by cos 2, the second by sin ¢’, and
subtracting, we have



192 REDUCTION OF ZENITH DISTANCES.

be no appreciable error in regarding them as proportional to
their sines; and hence we have

U—C=pFSFt(pF S)sinpsin § (257)

the upper signs being used for the upper limb and the lower
signs for the lower limb.

In this formula, p is the parallax computed for the zenith
distance of the limb, and the small term 4 (p = S)sin p sin 8 may
be regarded as the correction for the error of assuming the
parallax of the limb to be the same as that of the centre.

ExaympLe.—In latitude ¢ = 88° 59’ N., given the observed zenith
distance of the moon’s lower limb, z = 47° 29’ 58’/, the azimuth
A =33° ¢/, Barom. 30.25 inches, At. Therm. 65° F., Ext. Therm.
64° F., Eq. hor. par. = = 59’ 10".20; find the geocentric zenith
distance of the moon’s centre: :

(Table IIL.) (¢p—¢) =11"15" 3 =47°29'58".00
log (9 — ¢') = 2.8293 (TableIL) r = 1 2.27
log cos 4 9.9236 §'=47 381 0.27
log ¥ 2.7529 y=__ 026.
(Table IIL) log p 9.999428 {'—y =47 2184.
log sin w 8.235806
log sin (§' —y) 9.866652
log sin p 8.101886 p= 43 28".09
log sin w 8.235806 S= 16 9.00
(Art. 128) log (0.272956)  9.436093 p+8S= 6937.09
log sin § 7.671899  }(p + S)sin psin S= 0.11
log sin p sin § 5.77389 §'—§¢= 59 87.20
log (» + 8) 8.56585
log § 9.6990 ¢ =46°81'28".07

log 4 (p + S)sin p sin § 9.0264

It is hardly necessary to observe that if the geocentric zenith
distance of the centre of the moon or other body is given, the
apparent zenith distance of the limb affected by parallax and
refraction will be deduced by reversing the order of the steps
above explained.

If altitudes are given, we may employ altitudes throughout
the computation, putting everywhere 90° — h, &ec. for z, &c., and
making the necessary obvious modifications in the formulee.
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CHAPTER V.
FINDING THE TIME BY ASTRONOMICAL OBSERVATIONS.

187. WE have seen, Art. 55, that the local time at any place
is readily found when the hour angle of any known heavenly
body is given. This hour angle is obtained by observation, but,
a direct measure of it being in gencral impracticable, we must
have recourse to observations from which it can be deduced.

The observer is supposed to be provided with a clock, chro-
nometer, or watch, which is required to show the time, mean or
sidereal, either at his own or at some assumed meridian, such as
that of Greenwich.

The clock correction* is the quantity which must be added alge-
braically to the time shown by the clock to obtain the correct
time at the meridian for which the clock is regulated. If we put

T = the clock time,
T’ = tho true time,
AT = tho clock correction,
we have
T =T + aT
or AT =T'—-T (258)

and the clock correction will be positive or negative, according as
the clock is slow or fast. It is generally the immediate object of
an observation for time to determine this correction. At the
instant of the observation, the time T is noted by the clock,
and if this time agrees with the time 7 computed from the
observation, the clock is correct; otherwise the clock is in error,
and its correction is found by the equation a7 = 7" — T.

The clock rate is the daily or hourly increase of the clock cor-
rection. Thus, if

* For brevity, I shall use clock to denote any time-keeper.
Vou. L—13
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AT, = the clock correction at a time T,

AT = “« « “ T,

8T = the clock rate in a unit of time,
we have

aT=aT,+ 3T (T — T) (259)

where 7' — T, must be expressed in days, hours, &c., according
a8 07 is the rate in one day, one hour, &c.

‘When, therefore, the clock correction and rate have been
found at a certain instant 7j, we can deduce the true time from
the clock indication 7" (or “clock face,” as it is often called)
at any other instant, by the equation

T' =T+ AT, + 3T (T — T) (260)

If the clock correction has been determined at two different
times 7, and 7, the rate is inferred by the equation

3T — AT — A&
T—-1T,

(261)

But these equations are to be used only so long as we can
regard the rate as constant.

Since such uniformity of rate cannot be assumed for any great
length of time, even with the best clocks (although the perform-
ance of some of them is really surprising), it is proper to make
the interval between the observations for time so small that the
rate may be taken as constant for that interval. The length of
the interval will depend upon the character of the clock and the
degree of accuracy required.

ExaMPLE.—At noon, May 5, the correction of a mean time
clock is — 16" 47°.30; at noon, May 12, it is — 16" 18°.50 ; what is
the mean time on May 25, when the clock face is 11* 18 12'.6,
supposing the rate to be uniform ?

May 5, corr. — — 16 47.30
“« 12, « = -—16 13.50
Rate in 7Tdays = - 838.80

IT— 4+ 4.829

Taking, then, as our starting point T, = May 12, 0*, we have
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Local sidereal time of transit —a — 184 17™ 87.,92 -
Longitude =— 113 56.
Greenwich sidereal time = 12 3 41.92
March 15, sid. time of mean noon — 23 33 5.87
8id. interval from mean noon 12 30 86.56

Reduction to mean time = - 2 2.97

Mean Gr. time of star’s

local transit } =T= 1228 33.58
Chronometer time of do. = = 12 30 19.00
Chronometer correction = AT == — 1 46.42

140. (B). Equal altitudes of the sun before and after noon.—If the
declination of the sun were the same at both observations, the
hour angles reckoned from the meridian east and west would be
equal when the altitudes were equal, and the mean of the two
clock times of observation would be the time by the clock at
the instant of apparent noon, and we should find the clock cor-
rection as in the case of a fixed star. To find the correction
for the change of declination, let

¢ = the latitude of the place of observation,
8 = the sun’s declination at apparent (local) noon,
as — the increase of declination from the meridian to the west
observation, or the decrease to the east observation,
h = the sun’s true altitude at cach observation,
T, = the mean of the clock times A.M. and P.M,,
AT, = the correction of this mean to reduce to the clock time
of apparent noon,
t = half the clapsed time between the observations.

Then we have

t 4 AT, = the hour angle at the A. M. observation reckoned
towards the east,

t — A T, = the hour angle at the P.M. observation,

é — a3 = the declination at the A.M. “«

S+ as = « « PM «

and, by the first equation of (14) applied to each observation,

sin A = sin ¢ sin (8 — a48) 4 cos ¢ cos (8 — ad)cos (t + aT,)
sin A = sin ¢ sin (8 + ad) + cos ¢ cos (8 4 ad) cos (¢t — aTy)
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If we substitute

sin (8 == A%) —=sin d cos A3 = cosdsin Ad
cos (3 = &%) = cosdcos Ad = sin dsin ad
cos(t =aT,)=costcosal,FsintsinaT,

and then subtract the first equation from the second, we shall
find
= 2 8in ¢ cos 8 8in A3 — 2 cos ¢ sin d8in Ad cos t cos a T,
-+ 2 cos ¢ cos 88in t cos ad sin AT,

whénce, by transposing and dividing by the coefficient of sin a 7},

. tan Ad. ta tan Ad. tané
sinal, — —2no°-eg | ARAT. AN
sin ¢ tan ¢

cos AT,

This is a rigorous expression of the required correction a7}, but
the change of declination is so small that we may put ad for its
tangent, a7, for its sine, and unity for cos a7, without any
appreciable error; and, since ad is expressed in seconds of are,
we shall obtain a7 in seconds of time by dividing the second
member by 15. We thus find the formula*

AT — Ad.tan g Ad.tand
o 15 sint 15 tant

(262)

The Ephemeris gives the hourly change of 8. If we take it for
the Greenwich instant corresponding to the local noon, and call
it a3, and if ¢ is reduced to hours, we have

aAd = 4'8.t
and our formula becomes

oT, = — A's.ttan o a’s.ttan s [Equatjon

15sint 15 tan ¢ for noon.

] (263)

To facilitate the computation in practice, we put

t t

A=— - B =
15 sint 15 tan ¢
a=A.a'd.tan g b=DB.a'8.tané (264)
then we have
AT},:a + b

* As first given by Gavss, Monatlicke Correspondenz, Vol. 23.
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and declination, since these quantities do not enter into the com-
putation. In observations of the sun, an error in the latitude

affects the term
a=Aar'dtan ¢

by differentiating which we find that an error dp produces in a
the error da = A 4’8 . sec? ¢ . dg, or, putting sin dp for dg,

da = Aa's sect ¢ sindg

In the same manner, we find that an error dd in the declination
produces in b the error

db = Ba's sec? & sin dé

In the example of Art. 140, suppose the latitude and declina-
.tion were each in error 1. 'We have

log A a’8 n1.2446 log Ba's 0.9793
log sec? ¢ 0.2188 log sec* 8 0.0044
log sin 1’ 6.4637 log sin 1’ 6.4637
logda n7.9271 logdd  7.4474

da = —0°.008 db=+ 0003

If dp and do had opposite signs, the whole error in this case would
be 07008 4- 0~.003 = 0".011. As the observer can always easily
obtain his latitude within 1’ and the declination (even when the
longitude is somewhat uncertain) within a few seconds, we may
regard the method as practically free from the effects of any
errors in these quantities. The accuracy of the result will there-
fore depend wholly upon the accuracy of the observations.

The accuracy of the observations depends in a measure upon
the constancy of the instrument, but chiefly upon the skill of the
observer. Each observer may determine the probable error of
his observations by discussing them by the method of least
squares. An example of such a discussion will be given in the
following article.

The effect of an error in the altitude is given by (266). Since
we have, 4 being the azimuth of the object,
cos & sin ¢

sin A =
cos h
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the formula may also be written

A'T'o p— .—Ah_.

80 cos ¢ 8in A
which will be least when the denominator is greatest, i.e. when
A =90° or 270°, or when the object is near the prime vertical.
From this we deduce the practical precept to take the observations
when the object is nearly east or west. This rule, however, must not
be carried so far as to include observations at very low altitudes,
where anomalies in the refraction may produce unknown dif-
ferences in the altitudes. If the star’s declination is very nearly
equal to the latitude, it will be in the prime vertical only when
quite near to the meridian, and then both observations may be
obtained within a brief interval of time; and this circumstance
is favorable to accuracy, inasmuch as the instrument will be less
liable to changes in this short time.

144. Probable error of observation.—The error of observation is
composed of two errors, one arising from imperfect setting of
the index of the sextant, the other from imperfect noting of the
time; but these are inseparable, and can only be discussed as a
single error in the observed time. The individual observations
are also aftected by any irregularity of graduation of the sextant,
but this error does not affect the mean of a pair of observations
on opposite sides of the meridian; and therefore the error of
observation proper will be shown by comparing the mean of
the several pairs with the mean of these means. If, then, the
mean of a pair of observed times be called a, the mean of all
these means a,, the probable error of a single pair, supposing all
to be of the same weight, is*

_ l.‘.‘(a—ai’
r_q\, n—1

in which n = the number of pairs, and ¢ = 0.6745 is the factor
to reduce mean to probable errors. The probable error of the
final mean «, is

3

Ty =
Vn

* See Appendix, Least Squares.
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ExampLE.—At the U. 8. Naval Academy, June 18, 1849, the
following series of equal altitudes of the sun was observed.

Chro. A M. Chro. P.M. a a—a, (a —ap
0* 43m 53, G 44m g5 & 13m 58.25 + 0.12 0.0144
44 19. 43 38. 68.60 + 0.37 .1369
44 46. 43 11.6 68 .25 +0.12 0144
4 11. 42 46.3 - 68 .65 + 0.562 2704
45 87. 42 19.7 68 .85 + 0.22 .0484
406 1.7 41 563.6 57.60 —0.563 .2809
46 28.5 41 27. 67.75 —0.38 1444
46 65. 41 0.6 67.76 —0.88 1444
47 19.7 40 36.5 58.10 - —0.08 .0009
a,=5 18 58.13 I (a—ay)?' = 1.0551
n=29 Z(a— ap)?

n—1= r_qd n-1 — 0245
ro= 7’.' = 0082

A similar discussion of a number of sets of equal altitudes of
the sun taken by the same observer gave 0-.23 as the probable
error of a single pair for that observer, and consequently the
probable error of the result of six observations on each side of
the meridian would be only 0.28 =/ 6 = 0.094. This, how-
ever, expresses only the accidental error of observation, and does
not include the eftect of changes in the state of the sextant be-
tween the morning and afternoon observations. Such changes
are not unfrequently produced by the changes of temperature to
which it is exposed in observations of the sun; it is important,
therefore, to guard the instrument from the sun’s rays as much
as8 possible, and to expose it only during the few minutes
required for each observation. The determination of the time
by stars is mostly free from difficulties of this kind, but the
observation is not otherwise so accurate as that of the sun, ex-
cept in the hands of very skilful observers.

THIRD METHOD.—BY A SINGLE ALTITUDE, OR ZENITH DISTANCE.

145. Let the altitude of any celestial body be observed with
the sextant or any altitude instrument, and the time noted by
the clock. For greater precision, observe several altitudes in
quick succession, noting the time of each, and take the mean of
the altitudes as corresponding to the mean of the times. But
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in taking the mean of several observations in this way, it must
not be forgotten that we assume that the altitude varies in pro-
portion to the time, which is theoretically true only in the
exceptional case where the observer is on the equator and the
star’s declination is zero. It is, however, practically true for an
interval of a few minutes when the star is not too near the
meridian. The observations themselves will generally show the
limit beyond which it will not be safe to apply this rule. "When
the observations have been extended beyond this limit, a cor-
rection for the unequal change in altitude (i.e. for second differ-
ences) can be applied, which will be treated of below.

With the altitude and azimuth instrument we generally ob-
tain zenith distances directly. In all cases, however, we may
suppose the observation to give the zenith distance. Ilaving
then corrected the observation for instrumental errors, for re-
fraction, &c., Arts. 185, 136, let £ be the resulting true or geo-
centric zenith distance. Let ¢ be the latitude of the place of
observation, ¢ the star’s declination, ¢ the star’s hour angle.
The three sides of the spherical triangle formed by the zenith,
the pole, and the star may be denoted by a =90° — ¢, b={¢, ¢ =
90° — 4, and the angle at the pole by B = ¢, and hence, Art. 22,
we deduce

sindt—= ‘\/l(si“ 3[4 (¢ —)]sin [ —(¢ — ] ) (267)

€Os ¢ cOo8 ¢

which gives ¢ by a very simple logarithmic computation. From
t we deduce, by Art. 55, the local time, which compared with
the observed clock time gives the clock correction required.

It is to be observed that the double sign belonging to the
radical in (267) gives two values of sin}{, the positive corre-
sponding to a west and the negative to an east hour angle; since
any given zenith distance may be observed on either side of the
meridian. To distinguish the true solution, the observer must
of course note on which side of the meridian he has observed.

If the object observed is the sun, the moon, or a planet, its
declination is to be taken from the Ephemeris, for the time of
the observation (referred to the meridian of the Ephemeris); but,
as this time is itself to be found from the observation, we must
at first assume an approximate value of it, with which an approxi-
mate declination is found. With this declination a first compu-
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Observed 20 =38° 10" 0

Indexcorr, =— 110
33 8 50

App. altitude =16 34 25
z=13 25 35

(TableIlyr =+ 8 15
n8in2z=— p=— 8
S=— 18 17

=178 12 25

The computation by (267) is then as follows:

¢ =  88° 58 53" log sec ¢ 0.109383
8= —22 50 27 log sec 8 0.035464
¢—3= 61 49 20 log sin § sum 9.965661
t= 73 12 25 log sin ¢ diff. 8.996455
psum= 67 30 52.5 19.106963
3 diff. = 5 41 82 .5 logsind ¢ 9.553482

$t=20°5725".6
Apparent time = ¢ = 2* 47~ 39°.4

Eq. of time =—7 258
Local mean time =2 40 13.8
Longitude =5 5 57.5
TrueGr.Time=T"'=17 46 11.1

T—=17 36 3.1

aT=1+ 9 36.0

agreeing so nearly with the assumed correction that a repetition
of the computation is unnecessary.

146. If it is preferred to use the altitude instead of the zenith
distance, put the true altitude A = 90° — ¢, and the polar distance
of the star P = 90° — 4, then we have, in (267),

sin§[{— (¢ —3)]=s8in}(90° —h — ¢ + 90°—P)=cos } (h + ¢+ P)
sind[{+ ¢ —3]=8in3(90°—A 4 ¢—90°4 P)=sin } (¢ + P—h)

If then we put

=th+ ¢+ P
the formula becomes
. cos 8 8in (8 — A)
sin }t = \/ ( ~cos p sin P (268)

VoL IL.—14
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for the logarithms of sin ¢ sin 8 and cos ¢ cos 8 will be constant,
and for each observation we shall only have to take from the
trigonometric table the log. of cos {'; the logarithm of the nume-
rator will then be found by the aid of Zeci’s Addition or Sub-
traction Table, which is included in ITuLsse’s edition of VEea's
Tables. The addition or the subtraction table will be used ac-
cording as sin ¢ sin d is positive or negative.

149. Effect of errors in the data upon the time computed from an
“altitude.—We have from the differential equation (51), Art. 85,
multiplying d¢ by 15 to reduce it to seconds of are,

sin ¢ cos & (15dt) = d7 — cos Ady + cos ¢ ds

where dZ, dp, dé, may denote small errors of Z, ¢, 8, and dt the
corresponding error of ¢; A is the star’s azimuth, g the parallactic
angle, or angle at the star.

If the zenith distance alone is erroneous, we have, by putting
dg =0, and déd = 0,

@ dr

15dt = — = -
singcosd cos¢sind

from which it follows that a given error in the zenith distance
will have the least effect upon the computed time when the
azimuth is 90° or 270°; that is, when the star is on the prime
vertical ; for we then have sin A = + 1, and the denominator
of this expression obtains its maximum numerical value. Also,
since cos ¢ is a maximum for ¢ = 0, it follows that observa-
tions of zenith distances for determining the time give the
most accurate results when the place is on the equator. On the
other hand, the least favorable position of the star is when it is
on the meridian, and the least favorable position of the observer
is at the pole.

By putting d7 = 0, dd = 0, sin ¢ cos é = cos ¢ sin 4 we have

Bat—— %
cos ¢ tan 4

by which we see that an error in the latitude also produces the
least effect when the star is on the prime vertical, or when the
observer is on the equator. Indeed, when the star is exactly in
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the prime vertical, a small error in ¢ has no appreciable effect :
since, then, tan A = oo, and hence when the latitude is uncertain,
we may still obtain good results by observing only stars near the

prime vertical.

By putting d7 = 0, dp = 0, we have

ds

15dt = ———
cos ¢ tangq

which shows that the error in the declination of a given star
produces the least effect when the star is on the prime vertical ;*
and of different stars the most eligible is that which is nearest
to the equator.

As very great zenith distances (greater than 80°) are, if pos-
sible, to be avoided on account of the uncertainty in the refraction,
the observer will often be obliged, especially in high latitudes,
to take his observations at some distance from the prime vertical,
in which case small errors of zenith distance, latitude, or declina-
tion may have an important effect upon the computed clock cor-
rection. Nevertheless, constant errors in these quantities will
have no sensible effect upon the rate of the clock deduced from
zenith distances of the same star on different days, if the star is
observed at the same or nearly the same azimuth, on the same
side of the meridian; for all the clock corrections will be in-
creased or diminished by the same quantities, so that their
differences, and conscquently the rate, will be the same as if

‘these errors did not exist. The errors of eccentricity and

graduation of the instrument are among the constant errors

‘which may thus be eliminated.

But if the same star is observed both east and west of the
meridian, and at the same distance from it, sin 4 or tan 4, and
tan ¢, will be positivé at one observation and negative at the
other, and, having the same numerical value, constant errors
de, dd, and dZ will give the same numerical value of d¢ with
opposite signs. Ilence, while one of the deduced clock correc-
tions will be too great, the other will be too small, and their
mean will be the true correction at the time of the star's transit

cos8 o

* From the equation sin ¢ = v sin A4, it follows that sin ¢ is & maximum
co!

(for constant values of ¢ and ¢) when sin .4 =1, and tan ¢ is a maximnm in the
same case.
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over the meridian. Ilence, it follows again, as in Art. 143, that
small errors in the latitude and declination have no sensible
effect upon the time computed from equal altitudes.

150. To find the change of zenith distance of a star in a given in-
terval of time, having regard to second differences.
The formula
d% = cos ¢ sin A dt

is strictly true only when dZ and dt are infinitesimals. But the
complete expression of the finite difference aZ in terms of the
finite difference at involves the square and higher powers of at.
Let £ be expressed as a function of ¢ of the form

¢ =ft

then, to find any zenith distance ¢ + aZ corresponding to the
hour angle ¢ 4 at, we have, by TaxrLor’s Theorem,

2 2
i’z.At dff.A_t_

4 AL = t at) = ft —_ eee
+ S+ at) f+dt oo T
or, taking only second difterences,
az as an
Al =—.at + —.—
dt + der 2

‘We have already found

d7 .
— —=cos ¢8ind
dt ¢

which gives, since A varies with ¢, but ¢ is constant,

dz dA

— =cospcos 4. —

dae dt
Bat from the second of equations (51) we have, since dé and d¢
are here zero,

d4 _ cosgcosd cosgsind

dt sing sin ¢

whence
a*7 __ cos ¢ 8in A cos A cos ¢

de? sin ¢
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and the expression for a becomes

cos ¢ 8in A cos A cosq af?

AL = cos ¢ 8in 4. at + -
sin ¢ 2

Since aZ and at are here supposed to be expressed in parts of
the radius, if we wish to express them in seconds of arc and of
time respectively, we must substitute for them aZ sin 1’ and
15at sin 1”7, and the formula becomes

cos g sin A cos A cosq (15at)*sin 1”
sin ¢ 2

at= cosgsin 4 (15at) + @

But in so small & term as the last we may put

(15at)?sin 1” _ 2 sin? }at m

2 sin 1”

the value of which is given in our Table V., and its logarithm
in Table VL. ; so that if we put also

a=cos ¢sind, k= &A_Eﬁl
sin ¢
we shall have
a? = 15aat + akm (272)

151. A number of zenith distances being observed at given clock
times, to corrcet the mean of the zenith distances or of the clock times
for second differenccs.—The first term of the above value of af
varies in proportion to af, but the second term varies in propor-
tion to af; and hence, when the interval is sufliciently great to
render this second term sensible, equal intervals of time corre-
spond to unequal difterences of zenith distance, and vice rersa:
in other words, we shall have second difterences either of the
zenith distance or of the time. Two methods of correction
preseut themselves. .

1st. Reduction of the mean of the zenith distances to the mean of the
times.—Let T\, T,, Ty, &c. be the observed clock times; ¢, £y Zy
&c. the corresponding observed zenith distances; 7" the mean of
the times; ¢, the mean of the zenith distances; ¢ the zenith
distance corresponding to 7. The change £, — { corresponds to
the interval 7, — T, 7, — ¢ to T, — T, &c.; so that if we put

TW—T=n+, T,

.- T='r,, &c.
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we have, by (272),
¢, —¢=15ar, 4 akm,
¢, — ¢ =15ar, + akm,
(G, —¢C=1bar, 4 akm,
&e. &e.

. . __2sin'ir, __ 2sin'ir,
in which m; = Sl ™M ,&c., are found by Tab. V.
with the arguments r,, r,, &c. The mean of these equations,
observing that

T, 4+ 1+ 1, + &e. =0

gives
m, + m, + m, + &c
n

E=¢( —ak.

in which n = the number of observations. Or, denoting the mean
of the values of m from the table by m,, that is, putting

m _m + m, + m, 4 &e.
o n

we have
{=1¢{, — akm, (278)
2d. Reduction of the mean of the times to the mean of the zenith
distances.—Let T, be the clock time corresponding to the mean
of the zenith distances, then £, — ¢ is the change of zenith dis-
tance in the interval 7, — 7, and, since this interval is very small,
we shall have sensibly

15a(T, — T) = ¢, — ¢ = akm,
whence
T, = T + s km, @74)

We have,then,only to compute the true time 7}/ from the mean
of the zenith distances in the usual manner, and the clock cor-
rection will then be found, as in other cases, by the formula

aT=T;—T,

To compute %, we must either first find ¢ and A, or, which is
preferable, express it by the known quantities. We have

cos g cos. A = cos t — sin ¢ sin 4 cos ¢
in?
- tcosycosacosc
sin?{

=cos8t —
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whence
8in ¢ cos ¢ cos ¢

T =T Lm cott — x m
0 + {5 m, s M e an ¢

(275)
in which we employ for { and ¢ the mean zenith distance and
the computed hour angle.

This mode of correction is evidently more simple and direct
than the first.

ExaMpLE.—In St. Louis, Lat. 38° 88’ 15 N., Long. 6* 1~ T* W,
tne following double altitudes of the sun were observed with a
Pistor and Martin prismatic sextant, the index correction of
which was + 20”. The assumed correction of the chronometer
to mean local time was + 2* 12. Barom. 30.25 inches, Att.
Therm. 80°, Ext. Therm. 81°.

St. Louis, June 24, 1861.

20 Chronom. T m
125° 15 10”. 228 143056 6™ 42 88".14

126 49 10 16 76 6 5 60 .7
126 28 0 17 46.0 8 26 28 .14
126 41 40 18 89.6 2 88 12 .76
127 32 80 21 66 0 6 0.02
127 57 46 22 22. 110 2 .67
128 22 0 23 8856 2 21 10 .84
128 51 50 26 1.2 8 49 28 .60
120 8 85 25 51.3 4 89 42 .45
129 83 0 27 86 & 51 67 .19
Mean 127 83 28 T=22 21 12.16 my = 82 .66

+ 20 Correction for}=_ 1.67

127 33 48 d diff. i log m, 1.5189
Obsd @ 63 46 b4 T,—22 21 10.48 :°5'1"s ' g'gg
*r = — 27 .2 Ty =22 28 22.78 °84f°_‘3‘ e

p= + 8.7 AT—+ 2 1230 =~ XX
8= 4 16746 .3 log s my 0.3378
h= 64 216 .8 logsin¢ n9.6215
= 25 67 48 .2 logcos ¢  9.8927
¢— 88 8815. logcos d  9.9627
6= 23 2349.8 log cosec {, 0.8588
Yy log cot {, 0.3378
=— 1438"55.23 —8.08  £0.4859

App. time = 22 21 4.77 —1.67
Eq.oftime = 4 2 18.01
T;= 22 28 22.78

*The refraction should here be the mean of the refractions computed for the
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The correction for second differences is particularly useful in
reducing series of altitudes observed with the repeating circle ;*
for with this instrument we do not obtain the several altitudes,
but only their mean. (See Vol. II.) When the several altitudes
are known, we can avoid the correction by computing each
observation, or by dividing the whole series into groups of such
extent that within the limits of each the second differences will
be insensible, and computing the time from the mean of each

group.

FOURTH METHOD.—BY THE DISAPPEARANCE OF A STAR BEHIND A
TERRESTRIAL OBJECT.

152. The rate of the clock may be found by this method with
considerable accuracy without the aid of astronomical instru-
ments. The terrestrial object should have a sharply defined
vertical edge, behind which the disappearance is to be observed,
and the position of the eye of the observer should be precisely
the same at all the observations. If the star’s right ascension
and declination are constant, the difference between the sidereal
clock times 7 and T of two disappearances is the rate 47 in the

interval, or
0T = Tl — T,

but if the right ascension @ has increased in the interval by aa,
then the rate is .
oT — 71! — T. + Aa

To find the correction for a small change of declination = ad,

several altitudes or zenith distances, but for small zenith distances the difference
will be insensible. At great zenith distances we should compute the several refrac-
tions, but under 80° we may take the refraction r for the mean apparent zenith
distance z,, and correct it as follows: Take the difference between z, and each z, and
the mean m, of the values of

™ 2 sin? } (z — z,)

sin 1”

from Table V. (converting the argument z — z, into time); then the mean of the
refractions will be found by the formula
T =1 + 2m, 8in 7 sec? z;.

The difference z — z, should not much exceed 1°.
# This method was frequently practised in the geodetic survey of France. See
Nouvelle Description Géométrigue de la France (Puissaxt), Vol. L. p. 96.
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we have, by the second equation of (51), since the azimuth is here
constant as well as the latitude, so thay d4 = 0 and dp = 0,
_ 9(’ tan q

15 cos ¢

At =

and hence the rate in the interval will be

ad tan ¢

=T —T Ao —
! o e 15 cos 8

(276)

The angle ¢ will be found with sufficient precision from an
approximate value of ¢ by (19) or (20).

It we know the absolute azimuth of the object, we can find
the hour angle by Art. 12, and hence also the clock correction.

TIME OF RISING AND SETTING OF THE STARS.

153. To find the time of true rising or sciting,—that is, the instant
when the star is in the true horizon,—we have only to compute
the hour anglé by the formula (28)

cost — — tan ¢ tan ¢ »

and then deduce the local time by Art. 55.

154. To find the time of apparent rising or selling,—that is, the
instant when the star appears on the horizon of the observer,—we
must allow for the horizontal refraction. Denoting this refraction
by r,, the true zenith distance of the star at the time of apparent
rising or setting is 90° 4 r,, and, employing this value for ¢, we
compute the hour angle by (267).

Since the altitude A= 90° — ¢, we have in this case h = — 1,
with which we can compute the hour angle by the formula (268).

In common life, by the time of sunrise or sunset is meant the
instant when the sun’s upper limb appears in the horizon. The
true zenith distance of the centre is, then, { =90°+ r,— =z + §
(where 7 = the horizontal parallax and S = the semidiameter),
with which we compute the hour angle as before. The same
form is to be used for the moon.

TIME OF THE BEGINNING AND ENDING OF TWILIGHT.

155. Twilight begins in the morning or ends in the evening
when the sun is 18° below the horizon, and consequently the
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zenith distance is then ¢ = 90° + 18°, or A = — 18°, with which
we can find the hour angle by (267) or (268).

Note.—Methods of finding at once both the time and the latitude from observed
altitudes will be treated of under Latitude, in the next chapter.

FINDING THE TIME AT SEA.
First Method.—By a Single Altitude.

156. This is the most common method among navigators, as
altitudes from the sea horizon are observed with the greatest
facility with the sextant. Denoting the observed altitude cor-
rected for the index error of the sextant by H, the dip of the
horizon by D, we have the apparent altitude A’ = H — D; then,
taking the refraction r for the argument 4’, the true altitude of a
star is h = A’ — r. A planet is observed by bringing the esti-
mated centre of its reflected image upon the horizon, so that no
correction for the semidiameter is employed; the parallax is com-
puted by the simple formula (7 being the horizontal parallax)

p=mcosh
and hence for a planet
h=h —r 4 =cosl

The moon and sun are observed by bringing the reflected
image of either the upper or the lower limb to touch the horizon.
As very great precision is neither possible nor necessary in these
observations, the compression of the earth is neglected, and the
parallax is computed by the formula

p=mcos (W —r)
and then, 8 being the semidiameter,

h=HK—r+=cos(¥ —r) =S

In nautical works, the whole correction of the moon’s altitude
for parallax and refraction =z cos (K’ — r) — ris given in a table
with the arguments apparent altitude (A’) and horizontal parallax
(z). In the construction of this table the mean refraction is used,
but the corrections for the barometer and thermometer are given
in a very simple table, although they are not usually of sufficient
importance to be regarded in correcting altitudes of the moon
which are taken to determine the local time.
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ship had not changed her latitude or had run upon a parallel.
Hence } al is to be subtracted from the mean of the chrono-
meter times to obtain the chronometer time of the star’s transit
over the middle meridian.

In this formula we must observe the sign of tan A. It will
be more convenient in practice to disregard the signs, and to
apply the numerical value of the correction to the middle time
according to the following simple rule:—add the correction when
the ship has receded from the sun; subtract it when the ship has
approached the sun.

The azimuth may be found by the formula

sin ¢ cos &

in A —
sin cos h

in which for ¢ we take one-half the elapsed time.

The sun being the only object which is employed in this way,
we should also apply the equation of equal altitudes, Art. 140;
but, as the greatest change of the sun’s declination in one hour
is about 1/, and the change of the ship’s latitude is generally
much greater, the equation is commonly neglected as relatively
unimportant in a method which at sea is necessarily but ap-
proximate. But, if required, the equation may be computed
and applied precisely as if the ship had been at rest.

ExaMpLE.—At sea, March 20, 1856, the latitude at noon being
39° N., the same altitude was observed A.M. and P.M. as fol-
lows, by a chronometer regulated to mean Greenwich time:

Obsd. © 30° 0 A.M. Chro. time = 11* 39~ 33

Index corr. — 2 PM. « “« = 6 20 17
Dip — 4 Elapsed time =2t—= 6 40 44
Refraction — 2 Middle time = 2 59 55
Semidiam. + 16 Chron. correction = — 2 12
h=30 8  Green. time of}= 3 67 48

noon

The ship changed her latitude between the two observations
by ap = — 20’ = — 1200"”. For the Greenwich date March
20, 2* 58, the Ephemeris gives & = + 0° 4/, and we have ¢ =
8* 20 22 = 50° &’ 30", ¢ = 89° 0’. Hence
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log sin ¢ 9.8848
log cos & 0.0000
log sec A 0.0631

log sin 4 9.9479

TIME.

log 5  8.5229
log a¢ 8.0792
log sec ¢ 0.1095
log cot A 9.7165

log 26.8 1.4281

The ship has approached the sun, and hence 26'.8 must be sub-
tracted from the middle time.

If we wish to apply the equation of equal altitudes, we have
further from the Ephemeris a’¢ = 4 59", and hence, by Art.
140,

log A  n9.4628 log B 9.2698
log a’'¢  1.7709 log a’¢  1.7709
log tan ¢ 9.9084 log tan ¢ 7.0658
a=—13'9 log a nl.1421 b=+ 0.0 log b 8.1065
Hence we have
Chro. middle time = 2* 59 55°.
Corr. for change of lat. = — 26.8
Equation of eq. alts. = — 138.9
Chro. time app.noon =2 59 14.3

At sea, instead of using the observation to find the chrono-
meter correction, we use it to determine the ship’s longitude (as
will be fully shown hereafter); and therefore, to carry the opera-
tion out to the end, we shall have

Chro. time app. noon = 20 59= 14
Corr. of chronom. = — 2 12.
Green. mean time noon = 257 23
Equation of time =— T 48.

Greenwich app. time at the local noon = 2 49 14

which is the longitude of the middle meridian, or the longitude
of the ship at noon.

159. In low latitudes (as within the tropics) observations for
the time may be taken when the sun is very near the meridian,
for the condition that the sun should be near the prime vertical
may then be satisfied within a few minutes of noon ; and in case
the ship’s latitude is eractly equal to the declination, it will be
satisfied only when the sun is on the meridian in the zenith. In
such cases the two equal altitudes may be observed within a few
minutes of each other, and all corrections, whether for change
of latitude or change of declination, may be disregarded.
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CHAPTER VI

FINDING THE LATITUDE BY ASTRONOMICAL OBSERVATIONS.

160. By the definition, Art. 7, the latitude of a place on the
surface of the earth is the declination of the zenith. It was also
shown in Art. 8 to be equal to the altitude of the north pole above
the horizon of the place. In adopting the latter definition, it is
to be remembered that a depression below the horizon is a
negative altitude, and that south latitude is negative. The
south latitude of a place, considered numerically, or without
regard to its algebraic sign, is equal to the elevation of the
south pole.

It is to be remembered, also, that the latitude thus defined is
not an angle at the centre of the earth measured by an arc of
the meridian, as it would be if the earth were a sphere; but it
is the angle which the vertical line at the place makes with the
plane of the equator, Art. 81.

‘We have seen, Art. 86, that there are abnormal deviations of
the plumb line, which make it necessary to distinguish between
the geodetic and the astronomical latitude. We shall here treat ex-
clusively of the methods of determining the astronomical lati-
tude; for this depends only upon the actual position of the
plumb line, and is merely the declination of that point of the
heavens towards which the plumb line is directed.

FIRST METHOD.—BY MERIDIAN ALTITUDES OR ZENITH DISTANCES.

161. Let the altitude or zenith distance of a star of known
declination be observed at the instant when it is on the meridian.
Deduce the true geocentric zenith distance ¢, and let ¢ be the
geocentric declination, ¢ the astronomical latitude.

Let the celestial sphere be projected on the plane of the
meridian, and let ZNZ’, Fig. 24, be the celestial meridian;: C
the centre of the sphere coincident with that of the earth; PCP’
the axis of the sphere; P the north pole; and ECQ the projection
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directly the zenith distance, or its supplement, the nadir distance.
With a meridian circle perfectly adjusted in the meridian, the
instant of transit would be known without reference to the
clock, and the observation would be made at the instant the
star passed the middle thread of the reticule; but when the in- -
strument is not exactly in the meridian, or when the observation
is not made on the middle thread, the observed zenith distance
must be reduced to the meridian, for which see Vol. II., Meridian
Circle.

With the sextant or other portable instruments the meridian
altitude of a fixed star may be distinguished as the greatest
altitude, and no reference to the time is necessary. But, as the
sun, moon, and planets constantly change their declination,
their greatest altitudes may be reached either before or after the
meridian passage ;* and in order to observe a strictly meridian
altitude the clock time of transit must be previously computed
and the altitude observed at that time.

ExaMpLE 1.—On March 1, 1856, in Long. 10* 5™ 32 E., suppose
the apparent meridian altitude of the sun’s upper limb, north of
the zenith, is 63° 49’ 50’’, Barom. 30. in., Ext. Therm. 50°; what

is the latitude ?

App. zen. dist. @ = 26° 10" 10”.
p — — 3 .8
S =
4
é

ExAMPLE 2.—Ju]y 20, 1856, suppose that at a certain place
the true zenith distances of a Aquile south of the zenith, and
a Cephei north of the zenith, have been obtained as follows:

o Aquilse a Cephei
=+ 26° 34 27"5 { = — 26° 54’ 28".3
d=+4 8 29 22.7 6:—-{-(_31__5_8_21.1
g=+35 3 50.2 ¢=+4+35 8 52 .8

The mean latitude obtained by the two stars is, therefore,
¢ = + 35° 8’ 51”.5. In this example, the stars being at nearly

# See Art. 172 for the method of finding the time of the sun's greatest altitude,

which may also be used for the moon or a planet.
Vor. I.—15
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the same zenith distance, but on opposite sides of the zenith, any
constant though unknown error of the instrument, peculiar to
that zenith distance, is eliminated in taking the mean. Thus,
if the zenith distance in both cases had been 10’/ greater, we
should have found from a Aquile ¢ = 85° 4’ 0'.2, but from
a Cephei ¢ = 85° 8’ 42".8, but the mean would still be ¢ = 85° 8’
51".5.

It is evident, also, that errors in the refraction, whether due to
the tables or to constant errors of the barometer and thermo-
meter, or to any peculiar state of the air common to the two
observations, are nearly or quite eliminated by thus combining a
pair of stars the mean of whose declinations is nearly equal to
the declination of the zenith. The advantages of such a com-
bination do not end here. If we select the two stars so that the
difference of their zenith distances is so small that it may be
measured with a micrometer attached to a telescope which is so
mounted that it may be successively directed upon the two stars
without disturbing the angle which it makes with the vertical
line, we can dispense altogether with a graduated circle, or, at
least, the result obtained will be altogether independent of its
indications. For, let ¢ and ¢’ be the zenith distances, ¢ and 3’
the declinations of the two stars, the second of which is north of
the zenith; then, if ¢’ denotes only the numerical value of the

zenith distance, we have
=20 +4¢
. ¢ =0 — <4
the mean of which is

P=10+)+1E—1) 219)

80 that the result depends only upon the given declinations and
the observed difference of zenith distance which is measured with
the micrometer. Such is the simple principle of the method first
introduced by Captain TALcoTT, and now extensively used in this
country. To give it full effect, the instrument formerly known
as the Zenith Telescope in England has reccived several important
modifications from our Coast Survey. It will be fully treated of,
in its present improved form, in Vol. IL., where also will be
found a discussion of TaLcoTT’s method in all its details.

162. Meridian altitudes of a circumpolar star observed both above
and below the pole.—Every star whose distance from the elevated



MERIDIAN ALTITUDES. 227

pole is less than the latitude may be observed at both its upper
and lower culminations. If we put

h = the true altitude at the upper culmination,

hl p— “ “ 6@ lower “
p = the star’s polar distance at the upper culmination,
Ph= « “ “ “« lower «“
we have, evidently,
gp=h —p
g=h +p

the mean of which is

P = i(h + hl) + ¥ (p, —P) (280)

whence it appears that by this method the absolute values of p
and p, are not required, but only their difference p, —p. The
change of a star’s declination by precession and nutation is so
small in 12* as usually to be neglected, but for extreme precision
ought to be allowed for. This method, then, is free from any
error in the declination of the star, and is, therefore, employed
in all fixed observatories.

ExaMpLE.—With the meridian circle of the Naval Academy
the upper and lower transits of Polaris were observed in 1853
Sept. 15 and 16, and the altitudes deduced were as below:

Upper Transit. Lower Transit.
8ept. 15, App. alt. 40°28'25".42 Bept. 16, 87°81'89".76
Barom.  80.005 Barom.  80.146

Att. Therm. 66°.2 }Ref. 1 6.27 Att. Therm. 75° }Ref. 112.22
Ext, « 63 .8 Ext, « 74 .6

h=40 27 19 .15 h, =387 80 27 .54
p= 1 282G .04 py= 12825 .86
¢ =38 68 53 .11 ¢ — 88 568 63 .40

“ ¢ 53 .11

Mean ¢ — 38 68 63 .26

In order to compare the results, each observation is carried
out separately. By (280) we should have
$(h + b)) = 38° 58 53".35
b, —p)= — 0.09

¢ =38 58 53 .26

This method is still subject to the whole error in the refraction,
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which, however, in the present state of the tables, will usually be
very small.
If the latitude is greater than 45°, and the star’s declination
less than 45°, the upper transit occurs on the opposite side of the
~zenith from the pole. In that case h must still represent the
distance of the star from the point of the horizon below the pole,
and will exceed 90°. Thus, among the Greenwich observations
we find
1837 Juno 14, Capella 7, = 7°18 7794
h =95 30 7 .91
¢ =51 28 87 .93

163. Meridian zenith distances of the sun observed near the summer
and winter solstices.—When the place of observation is near the
equator, the lower culminations of stars can no longer be ob-
served, and, consequently, the method of the preceding article
cannot be used. The latitude found from stars observed at their
upper culminations only is dependent upon the tabular declina-
tion, and ig, therefore, subject to the error of this declination. If,
therefore, an observatory is established on or near the equator,
and its latitude is to be fixed independently of observations made
at other places, the meridian zenith distances of stars cannot be
employed. The only independent method is then by meridian
observations of the sun near the solstices.

Let us at first suppose that the observations can be obtained
exactly at the solstice, and the obliquity (¢) of the ecliptic is
constant. The declination of the sun at the summer solstice is
=+ ¢, and at the winter solstice it is = — ¢; hence, from the
meridian zenith distances ¢ and ¢’ observed at these times, we
should have

=7 +¢
=7'—¢
the mean of which is
=447

a result dependent only upon the data furnished by the observa-
tions. :

Now, the sun will not, in general, pass the meridian of the
observer at the instant of the solstice, or when the declination is
at its maximum value e; nor is the obliquity of the ecliptic con-
stant. DBut the changes of the declination near the solstices are
very small, and lience are very accurately obtained from the
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solar tables (or from the Ephemeris which is based on thesc
tables), notwithstanding small errors in the absolute value of the
obliquity. The small change in the obliquity between two
solstices is also very accurately known. If then ae¢ is the un-
known correction of the tabular obliquity, and the tabular values
at the two solstices are e and ¢/, the true values are ¢ + ae and
¢ + ae; and if the tabular declinations at two observations near
the solstices are e — x and — (¢/ — z’), the true declinations will
be 3 =¢+ ae —z and ¢’ = — (¢’ + ae — z’), and by the formula
¢ = { + & we shall have for the two observations

={ 4+¢ 4+ ac—=x
=5 —¢ — a4 2

the mean of which is
e=3E+)+ 4 —¢)—t(x—2)

a result which depends upon the small changes ¢ — ¢’ and z — x/,
both of which are accurately known.

It is plain that, instead of computing these changes directly, it
suffices to deduce the latitude from a number of observations
near each solstice by employing the apparent declinations of the
solar tables or the Ephemeris; then, if ¢’ is the mean value of
the latitude found from all the observations at the northern
solstice, and ¢’/ the mean from all at the southern solstice, the
true latitude will be

g=1(¢'+ ¢')

Every observation should be the mean of the observed zenith
distances of both the upper and the lower limb of the sun, in
order to be independent of the tabular semidiameter and to
eliminate errors of observation as far as possible.

SECOND METHOD.—BY A SINGLE ALTITUDE AT A GIVEN TIME.

164. At the instant when the altitude is observed, the time is
noted by the clock. The clock correction being known, we find
the true local time, and hence the star's hour angle, by the
formula

t=0 —a

in which © is the sidereal time and a the star's right ascension.
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limb observed with the sextant and artificial horizon was 114°
40’ 30’ at 4* 27 15* by a Greenwich Chronometer, which was
fast 2» 30.  Index Correction of Sextant = — 1’ 12/, Barom.
29.72 inches, Att. Therm. 61° F., Ext. Therm. 61° F. Required
the true latitude.

Sextant reading = 114° 40’ 30" Chronometer 42115
Index corr. = — 112 Correction — 230
114 39 18 Gr. date, March 27, 4 18 45

App. alt. © = 57 19 39 Longitude = 2 52 56
Semidiameter = -+ 16 3 Local meant. = 1 25 49
Ref. and par. = — 31 Eq.of time = — 5 19
A= 57 35 11 App. time,t = 1 20 30
d= 42 51 30 = 20° 7' 30"
logsect  0.027360
log tan 8  8.698351
log tan D 8.725711 log cosec ¢ 1.302190
log sin D 8.725098
D= 4 3°2'38" logsin A 9.926445
- r= 2558 49 . log cosy  9.953733

D—y=¢=—2256 11

ExampLE 2.—1856 Aug. 22; suppose the true altitude of
Fomalhaut is found to be 29° 10’ 0’ when the local sidereal time
is 21* 49 44°; what is the latitude ?

We have a = 22*49= 44*, whencot = — 120~ 0*; 3 = — 30° 22" 47".5;
D= —31°15 18", y = £ 60° 0’ 6", ¢ = + 28° 44’ 53”. The nega-
tive value of y here gives ¢ =— — 91° 15’ 19”; which is inadmissible.

/

165. The observation of equal altitudes east and west of the
meridian may be used not only for determining the time (Art.
139), but also the latitude. For the half elapsed sidereal time
between two such altitudes of a fixed star is at once the hour
angle required in the method of the preceding article. When
the sun is used in this way, the half difference between the
apparent times of the observations is the hour angle, and the
declination must be taken for noon, or more strictly for the
mean of the times of observation. By thus employing the
mean of the A.M. and P.M. hour angles and the mean of the
corresponding declinations, we obtain sensibly the same result
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at the same time with that of errors of altitude and time, we
should select a star as near the pole as possible, and observe-it
at or near its greatest elongation, on cither side of the meridian.
The proximity of the star to the pole enables us to facilitate the
reduction of a series of obscrvations, and we shall therefore
treat specially of this case as our Fourth Method below.

167. When several altitudes not very far from the meridian are
observed in succession, if we wish to use their mean as a single
altitude, the correction for second difterences (Art. 151) must be:
applied. It is, however, preferable to incur the labor of a sepa-
rate reduction of each altitude, as we shall then be able to com-
pare the several results, and to discuss the probable errors of the
observations and of the final mean. When the observations are
very near to the meridian, this separate reduction is readily
effected, with but little additional labor, by the following method:

THIRD METHOD.—BY REDUCTION TO THE MERIDIAN WHEN THE
TIME IS GIVEN.

168. To reduce an altitude, observed at a given time, to the meridian.— \4,} ’
This is done in various ways. C
- (A.) If in the formula, employed in Art. 164, w7

8in ¢ 8in & - cos ¢ cos 3 cos t = sin A
we substitute
cost —=1— 2sin?}t
it becomes

8in ¢ 8in ¢ -4 cos ¢cosd—2c63 gcos dsin® 4 t —sin h
But
8in ¢ 8in & 4 cos ¢ co8 & = cos (¢ — J) or cos (§ — ¢)

Ience, if we put
L=9¢—3 orf=23—g¢
the above equation may be written
cos §, = sin I 4 co8 ¢ cos & (2 sin? }¢) (282)

If the star does not change its declination, ¢, is the zenith
distance of the star at its meridian passage; and, being found by
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this equation, we then have the latitude as from a meridian
observation by the formula

?:6—[-:., or ¢=6—Cl

according as the zenith is north or south of the star.

When the star changes its declination, this method still holds
if we take & for the time of observation, as is evident from our
formulee, in which & is the declination at the instant when the
true altitude is A.

To compute the second member, a previous knowledge of the
latitude is necessary. As the term cos ¢ cos (2 sin® 3¢) de-
creases with ¢ if the observations are not too far from the
meridian, the error produced by using an approximate value of
¢ will be relatively small, so that the latitude found will be a
closer approximation than the assumed oune; and if the computa-
tion be repeated with the new value, a still closer approximation
may be made, and so on until the exact value is found.

This method is only convenient where the computer is pro-
vided with a table of natural sines and cosines, as well as a table
of log. versed sines, or the logarithmic values of 2 sin® } ¢

ExaMpLE.—Same as Example 1, Art. 164, h = 57° 85’ 11/,
0= 2°51"30",1=1*20"30". Approximate value of ¢'= — 28°.

log (2sin? § t) 8.785726
log cos ¢ 9.964026

nat. cos A 0.844201 log cos ¢ 9.999459
nat.no. 0.056132 . . . . . . . . log 8.749211
nat. cos %, 0.900333

§, = — 25° 47’ 54” (zenith south of sun.)

d =4 2 51 30

¢ = —22 56 24

differing but 13’ from the true value, although the assumed
latitude was in error nearly 4’. Repeating the computation with
—22° 54’ 24" as the approximate latitude, we find ¢ =— 22° 56/ 11"/,
exactly as in Art. 164.

169. (B.) We may also compute directly the reduction of the
observed altitude to the meridian altitude. Iutting

h, = meoridian altitude = 90° — ¢,
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the formula (282) gives
sin b, — sin A = 2 cos ¢ cos 4 sin* } ¢
But we have
sin h, — sin A = 2 cos 4 (h, + A) sin 4 (h, — 1)

and hence .
cos ¢ cos 48in® } ¢

cos ¥ (h, + k)

which gives the difference &, — &, or the correction of A to reduce
it to A,; but it requires in the second member an approximate
value both of ¢ and of h, the latter being obtained from the
assumed value of ¢ by the equation A, = 90° — (¢ — d); or, if
the zenith is south of the star, by the equation k, =90° — (3 —¢).

sin § (A, — h) =

(283)

ExamMpLE.—Same as the above.

3 =  2°51'30” log sin?} ¢ 8.484696
Approx. ¢ = —23 00 00 log cos ¢ 9.964026
“ ¢, = 25 51 30 log cos 8 9.999459
“ h,= 64 830 log scc § (h, + &) 0.812573
“« }(Zl + }’: = 62 g}s gg log sin § (h, — k) 8.760754
A= bsT311  s= 20530
hy= 6411 44 ¢,=—25 48 16
¢ = —22 56 46

This method does not approximate so rapidly as the preceding,
but the objection is of little weight when the observations are
very near the meridian. On the other hand, it has the great
advantage of not requiring the use of the table of natural sines.

170. (C.) Circummeridian altitudes.—When a number of altitudes
are observed very near the meridian,* they are called circum-
meridian altitudes. Each altitude reduced to the meridian gives
nearly as accurate a result as if the observation were taken on the
meridian. ‘

An approximate method of reducing such observations with
the greatest ease is found by regarding the small arc &} (k, — &)
as sensibly equal to its sine; that is, by putting

sin 3 (h, — k) = 4 (h, — h) sin 1”

* How near to the meridian will be determined in Art. 175.
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and taking A, for § (h, + ), from which it differs very little, so
that (288) may be put under the form

__cosgcosd 2sintit

b=k cos h, sin 1” (284)
The value in seconds of
REET Y
sin 1”

is given in Table V. with the argument ¢. If &', k', 1'”’, &c. are
the observed altitudes (corrected for refraction, ete.); ¢, ¢, t'",
&c., the hour angles deduced from the -observed clock times;
m’, m’’, m'", &c., the values of m from the table; and we put the
constant factor

__cosgpcosd  cosgcosd

A - = -
cos h, sin §,
we have h =k 4 An’ o
h: — h" + Am" ("‘85)
hl —_ hlll + Aml”
&ec.

and the mean of all these equations gives
Y " ’ ” "
hl=h+h+h +etc.+Am+m + m'" + &e.

n n

in which # is the number of observations; or
hy = h, + Am, (286)

in which h, denotes the mean of the observed altitudes corrected
for refraction, &c., and m, the mean of the values of m.

When A, has been thus found, the latitude is deduced as from
any meridian altitude, only observing that for the sun the de-
clination to be used is that which corresponds to the mean of
the times of observation, as has already been remarked in Art.
168.

ExaMpLE.—At the U. 8. Naval Academy, 1849 June 22, cir-
cummeridian altitudes of 3 Ursae Minoris were observed with a
Troughton sextant from an artificial horizon, as in the following
table. The times were noted by a sidereal chronometer which .
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was fast 1™ 45'.7. The index correction of the sextant was
— 14/ 58", Barometer, 30.21 inches, Att. Therm. 75° F., Ext.
Therm. 74° F.

The right ascension of the star was 14* 51" 14°.0
Chronometer fast +1 45.7

Chronometer time of star’s transit 14 52 59.7

The hour angles in the column ¢ are found by taking the differ-
ence between each observed chronometer time and this chro-
nometer time of transit.

2 Alt. % Chronom. t m
108° 89’ 40” 142 456m 477, ™12.7 102.0
89 50 47 1. 6 68.7 70.2
40 40 48 b4.6 4 5.2 82.8
41 0 61 29.5 1 80.2 4.4
41 0 b4 86.5 1 86.8 5.1
40 80 56 22. 8 22.3 22.83
40 20 67 48. 4 43.8 43.7
40 0 58 47.6 6 47.8 66.0
40 0 15 0 17.6 7 17.8 104.5
89 20 2 10. 9 10.3 165.1
Mean 108 40 14 my= 61.61
Ind. corr.  — 14 58
108 25 16 Assumed ¢ — 88° 69 0”
64 12 38 d=174 46 36 .9 :
Refr. —42.0 Approx. {,— 85 47 36 .9 log cos ¢  9.8008
Am, +21.6 log cos §  9.4192
h= 541217.6 log cosec{, 0.2829
gy = —3b5 47 42.5 log 4 9.6427
d —= 74 46 36.9 log m, 1.7897
¢ — 88 58 64 .4 log Amy  1.3324

ReMARK 1.—The reduction A, — & increases as the denominator
of A decreases, that is, as the meridian zenith distance decreases.
The preceding method, therefore, as it supposes the reduction to
be small, should not be employed when the star passes very near
the zenith, unless at the same time the observations are restricted
to very small hour angles. It can be shown, however, from the
more complete formule to be given presently, that so long as
the zenith distance is not less than 10°, the reduction computed
by this method may amount to 4’° 30’ without being in error
more than 1”7; and this degree of accuracy suffices for even the

- best observations made with the sextant.
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ReMARk 2.—If in (284) we put sing?=13 sin 1”.{(¢ being in
seconds of time), we have

cos ¢ cos & 225
cos A, 2

h—h= sin 1”7.¢* = at? (287)

in which @ denotes the product of all the constant factors. It
follows from this formula that near the meridian the altitude varies
as the square of the hour angle, and not simply in proportion to the
time. Hence it is that near the meridian we cannot reduce a
number of altitudes by taking their mean to correspond to the
mean of the times, as is done (in most cases without sensible
error) when the observations are remote from the meridian.
The method of reduction above exemplified amounts to sepa-
rately reducing each altitude and then taking the mean of all
the results.

171. (D.) Circummeridian altitudes more accurately reduced.—The
small correction which the preceding method requires will be
obtained by developing into series the rigorous equation (282).
This equation, when we put ¢ = 90° — A= true zenith distance
deduced from the observation, may be put under the form

cos § = cos {, — 2 cos ¢ cos J sin* ¢ ¢

which developed in series* gives, neglecting sixth and higher
powers of sin }¢,

* If we put y = 2 cos ¢ cos d sin? } ¢, the equation to be developed is
o8 =cos {; —y (a)

in which ¢, is constant and { may be regarded as a function of y; so that by Mac-
LAURIN'S Theorem

d a¥
e=gr= ) +(g o +1(5) o + 2 0

d)
in which (f), ( di) &c. denote the values of fy and its differential coefficients when
Y
y = 0. The equation (a) gives, by differentiation,
a i 1

sin{ - =1
dy dy sin{

—_—m—— . — &o.
dy? sin?{ dy 8in? {
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F
g =

Tng 2 ” aint
_cospcosd 2sin'}t (cos«;cosd).zcot $,8int ¢ (288)

sin {, sin 1” sin {, sin 1”

By this formula, first given by DELAMBRE, the reduction to
the meridian consists of two terms, the first of which is the same
as that employed in the preceding method, and the second is the
small correction which that method requires. These two terms
will be designated as the ¢ 1st Reduction” and * 2d Reduction.”
Putting

__2sin’ §t n_2sin‘§t
T sin1” " sinl”
A=cos.¢ cos & B=A'cot ¢,
sin {,
we have

If a number of observations are taken, we have a number of
equations of this form, the mean of which will be

&, =1¢§ —4m, + Bn,

in which ¢, is the arithmetical mean of the observed zenith dis-
tances, m, and n, the arithmetical means of the values of m and
n corresponding to the values of {. The values of n are also
given in Table V.

Having found ¢,, we have the latitude, as before, by the formula

p=3+¢,

in which we must give £, the negative sign when the zenith is
south of the star, and it must be remembered that for the sun
(or any object whose proper motion is sensible) & must be the
mean of the declinations belonging to the several observations,

But when y = 0 we have, by (a), { = {;, so that (3) becomes

y Yoty +;(1+soovcl)—c—&c (0)

gin { 2 sin? ¢, L

=4+

Restoring the value of y, this gives the development used in the text, observing that
a8 { and {, are supposed to be in seconds of arc, the terms of the series are divided
by sin 1” to reduce them to the same unit.
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or, which is the same, the declination corresponding to the mean
of the times of observation.* ~

Finally, it the star is near the meridian below the pole, the
hour angles should be reckoned from the mstant of the lower
transit. Recurring to the formula

cos { = 8in ¢ 8in & |- co8s ¢ cos & cos ¢

in which ¢ is the hour angle reckoned from the upper transit,
we observe that if this angle is reckoned from the lower transit
we must put 180° — ¢ mstead of t, or — cos t for + cos ¢, and then

we have
cos { = sin ¢ 8in & — cos ¢ cos & cos?

and, substituting as before,

cost=1—2sin*}¢
this gives
co8 { = — cos (¢ + 8) + 2 cos ¢ cos sin*}¢

or, since for lower culminations we have {, = 180° — (¢ + 4)
and cos {, = — cos (¢ + Jd),

cos { = cos §, 4 2 cos ¢ cos 3 sin?} ¢

which developed gives

¢ _P+cos¢cosa 2s8in?dt (cos¢cosa)’ 2cot 7, 8in* ¢ ¢
= . .

sin £, sin 1" sin {, sin 1”
or
= { 4 Am 4 Bn (sub polo) (290)

which is computed by the same table, but both first and second
reductions here have the same sign.

If a star is observed with a sidereal chronometer the daily
rate of which is so small as to be insensible during the time of

* To show that the mean declination is to be used, we may observe that for each
observation we have put {; = ¢ — 4, and that if &', 8", &c., ure the several declina-
tions, the several equations of the form (289) will give

¢$=20"+ (' — Am’' | Atcot { n'
¢ =20"+ " — Am" 4 A cot {, n"
&e.,
the mean of which, if § — mean of &', ", &c., will be

6=10 4§ — dmy + Atcot { iy =4+ ¢
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the observations, the hour angles ¢ are found by merely taking
the difference between each noted time and the chronometer
time of the star’s transit, as in the example of Article 170. But
if we wish to take account of the rate of the chronometer, it can
be done without separately correcting each hour angle, as fol-
lows: Let 87 be the rate of the chronometer in 24* (7 being
positive for losing rate, Art. 187); then, if ¢ is the hour angle
given directly by the chronometer, and ¢ the true hour angle,
we have

vt =24: 24* — 0T = 86400°: 86400 — T

—
86400,

Instead of sin 3¢ we must use sin }¢'; for which we shall have,
with all requisite precision,

whence

. . v . . (A
sin $ ¢’ = sin }t-t—,orsln’}t'=mn’lt.(i_)

[l

cos ¢ cos 3 2sin® }t
sin ¢, sin 1”

Hence, if we put

we shall have

Am =k

8o that if we compute 4 by the formula

A_:k.cos:pcosd
sin {,
2 sin? §¢

we can take m = for the actual chronometer intervals,

sin 1”
and no further attention to the rate is required.
The factor k can be given in a small table with the argument
“rate,” in connection with the table for m, as in our Table V.
If a star is observed with a mean time chronometer, the inter-

vals are not only to be corrected for rate, but also to be reduced
Vou. I.—16
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from mean to sidereal intervals by multiplying them by u =
1.00273791 (Art. 49); so that for sin® § ¢ we must substitute & sin®
(3. pt), or, with sufficient precision, kg sin? } ¢.

If the sun is observed with a mean time chronometer, the in-
tervals are both to be corrected for rate and reduced from mean
solar to apparent solar intervals. The mean interval differs
from the apparent only by the change in the equation of time
during the interval, and this change may be combined with the
rate of the chronometer. Denoting by 6E the increase of the
equation of time in 24* (remembering that E is to be regarded
as positive when it is additive to apparent time), and by .d7 the
rate of the chronometer on mean time, we may regard 67" —3E
as the rate of the chronometer on apparent time. Instead of
the factor k we shall then have a factor &/, which is to be found

by the formula
K= [_1__] '
| _ 4T—3E
86400

which may be taken from the table for k by taking 8T — 3E s
the argument.
Finally, if the sun is observed with a sldereal chronometer,

we must multlply sin? }t not only by A’ but by

Denoting /2 by ¢ and 2 by ¥, these rules may be collected, for

the convenience of reference, as follows:

Star by sidereal chron., A4 =k- M
| sin ¢, (291)

tar by mean time chron.,A—= ogr=
Star by ime chron., 4= ki- 222 1100 i 0.002375

coS ¢ coS 8

Sun by mean time chron., 4 =¥.—
, sin §,

(299)

7089 008 Oy o —9.997625)

Sun by sidereal chron.,, A=KV —
sin {,

for which 1og k will be taken from Table V. with the argument
rate of the chronometer = 87T'; and log &’ from the same table




CIRCUMMERIDIAN ALTITUDES. 243

with the argument 67 — 6E = daily rate of the chronometer
diminished by the daily increase of the equation of time.

. ExaMpLE.—1856 March 15, at a place assumed to be in lati-
tude 87° 49’ N. and longitude 122° 24’ W.  suppose the fol-
lowing zenith distances of the sun’s lower limb to have been
observed with an Ertel universal instrument,* Barom. 29.85
inches, Att. Therm. 65° F., Ext. Therm.- 63° F. The chrono-
meter, regulated to the local mean time, was, at noon, slow
11™ 20-.8, with a daily losing rate of 6'.6.

Obs’d zen. dist. Chronometer. t m n

40° 8 40”.7 23*37=35°. —19~58.8 783".3 17.49

40 2165 42 8. —15 80.8 472 4 0 .54
389 57 28.3 46 295 —11 4.3 240 6 0 .14
39 5417.2 50 465 — 6 47.3 90 .5 0 .02
89 52 33 . 55 16. — 2 17.8 10 4 0 .00
39 52845 0 0387.5 + 8 8.7 18 4 0 .00
39 5128 .6 5 13. 7 89.2 115 .0 0 .03
39 58 9.8 9 495 12 15.7 295 .1 0 .21
40 3 0.3 14 8. 16 342 5389 0.70
40 9 36. 18 81. 20 57.2 861 4 1 .80
Means 39 59 18 .5 ty= 4+ 0 29.1 my=—2342 .60 n,—0 .49

The equation of time at the local noon being + 8™ 54°.6, we
have
Mean time of app. noon = 0* 8= 54*.6
Chronometer slow = 11 20.8
Chr. timo of app. noon =23 57 33.8

The difference between this and the observed chronometer
times gives the hour angles ¢ as above.

The mean of the hour angles being 4 29.1, the declination is
to be taken for the local apparent time 0* 0™ 291, or for the
Greenwich mean time March 15, 8* 18™ 59.7; whence

6 =— 1°488"8
(Approximate) ¢ — + 37 49 0.
“ = 389 3788

The increase of the equation of time in 24* is 0F = — 1T°.4,

# See Vol. IL.,, Altitude and Azimuth Instrument, for the method of observing the
zenith distances.
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and, the chronometer rate being 67 = 4 6.6, we have 67 — ¢E

= + 24'.0, with which as the argument ¢“rate” in Table V. we
find log &’ = 0.00024.
The computation of the latitude is now carried out as follows:

log cos ¢  9.89761 Mean observed zen. dist. @ = 89° 59’ 18".5

log cos 3 9.99979 r—p= + 41 8
log cosec £, 0.19540  log A? 0.1861 §= — 16 6.5
log ¥ 0.00024 log cot ¢, 0.0821 Amg= — T 4.4
log 4 0.0930¢ log B 0.2682 Bny= -+ 09
logm, 253479 logm,  9.6902 ¢, = 39 3650 .3
log Am,  2.62783  log Bn,  9.9584 3= —1 48 88

o= 87 48 41 5

The assumed value of ¢ being in error, the value of 4 is not
quite correct; but a repetition of the computation with the value
of ¢ just found does not in this case change the result so much
as 0”.1.

172. (E.) Gauss’s method of reducing circummeridian altitudes of
the sun.—The preceding method of reduction is both brief and
accurate, and the latitude found is the mean of all the values
that would be found by reducing each observation separately.
This separate reduction, however, is often preferred, notwith-
standing the increased labor, as it cnables us to compare the
observations with each other, and to discuss the probable error
of the final result; and it is also a check against any gross error.
But, if we separately reduce the observations by the preceding
method, we must not only interpolate the refraction for each
altitude, but also the declination for each hour angle. Gauss
proposed a method by which the latter of these interpolations is
avoided. IHe showed that if we reckon the hour angles, not
from apparent noon, but from the instant when the sun reaches its
maximum altitude, we can compute the reduction by the method
above given, and use the meridian declination for all the observa-
tions. This method is, indeed, not quite so exact as the preced-
ing; but I shall show how it may be rendered quite perfect in
practice by the introduction of a small correction.

In the rigorous formula

cos { = sin o 8in & -} cos ¢ cos & cos ¢
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d is the declination corresponding to the hour angle ¢. If then

as = the hourly increase of the declination, positive when
the sun is moving northward,
3, = the declination at noon,

and if ¢ is expressed in seconds of time, we have

t.as
= 31 + 3600 =8 +=zx
where, since ad never exceeds 60", z will not exceed 30’ 8o long

88 1 < 30, Hence we may substitute, with great accuracy,

sin 8 = gin 8, 4 cos 4, sinzx
cos § = cos 3, — 8in 4, sinx

and the above formula becomes

cos { = sin ¢ 8in 8, 4 co8s ¢ o8 8, cos t |- sin (¢ — 3,) sinx
+ 2 cos ¢ 8in 3, 8in?§ ¢ 8in x

The last term is extremely small, rarely affecting the value of ¢
by as much as 0””.1; and since z is proportional to the hour
angle, and therefore has opposite signs for observations on differ-
ent sides of the meridian, the effect of this term will nearly or
quite disappear from the mean of a series of observations pro-
perly distributed before and after the meridian passage. Now,
we have

tadsin1” ad
ginr = ————=15¢ts8in1”". ——
8600
Let
sin # = ad_ sin(p—3,)
514000 cos ¢ cos 3,
then, taking
15t 8in 1” =sin t 4 } sin® ¢
we have
. . . . o8 ¢ COS &
sinx —=(sint + }sin*¢f)sing. —— 1
(sint 4  sin’ ) sin (g — 8,)

and the formula for cos ¢ becomes, by omitting the last term,

co8 { = sin ¢ sin 4, | cos ¢ cos J,(cos ¢ + sin ¢ sin )
<+ } cos ¢ cos ¢, sin’t sin &
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from the instant the sun reaches its maximum altitude, we have
§,=%—Am + Bn (293)

Since £, differs from the latitude by the constant quantity ¢’, its
value found from each observation should be the same. Taking
its mean value, we have

=4+

The angle &, being very small, may be found with ithe utmost
precision by the formula

=1 8% 4050920 (294)
810000 sin 17 4 A

which gives # in seconds of the chronometer when A4 has been
computed by the formula (292).

The most simple method of finding the corrected hour angles
! will be to add & to the chronometer time of apparent noon,
and then take the difference between this corrected time and
each observed time.

If we put ¢’ =4, + y, we have

2 sin? 2
sin 1”

y=4A. (295)

which requires only one new logarithm to be taken, namely, the
value of log m from Table VI. with the argument 4. We then
have, finally,

e=8+%+y (296)

ExavMPLE.—The same as that of the preceding article. We
have there employed the assumed latitude 37° 49’; but, since even
a rough computation of two or three obhservations will give a
nearer value, let us suppose we have found as a first approxima-
tion ¢ = 37° 48" 45/’ With this and the meridian declination
d,=—1° 48’ 9.2, and log %’ = 0.00024-as before, we now find,
by (292),

log A = 0.09310 log B = 0.2683

We have also there found the chronometer time of apparent
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noon = 28* 57" 83.8. 'We now take from the Ephemeris ad =
+ 59’7.22, and hence, by (294),

v log a8 1.7725
ar.co. log 4 9.9070
const. log 9.4059

6—412:2 log & 1.0854

Hence the chronometer time of the maximum altitude is
28* 57 83-.8 4 12'.2 = 23* 57 46°, which gives the hour angles
t as below: C

4 log m log Am log n log Bn
— 20~ 11-. 2.90274 2.99584 0.1900 0.4583
15 43. 2.68559 2.77869 9.7657 0.0340
11 16.5 2.39719 2.49029 9.1801 9.4484
6 59.5 1.98216 2.07526 8.3010 '8.5693
— 2 30. 1.08891 1.18201
4+ 2 515 1.20525 1.29835
7 27. 2.03730 2.13040 8.4771 8.7454
12 3.5 2.45551 2.54861 9.2943 9.5626
16 22. 2.72077 2.81387 9.8261 0.0944

20 45. 2.92677 3.01987 0.2381 0.5064

The refraction may be computed from the tables first for a mean
zenith distance, and then with its variation in one minute (which
will be found with sufficient accuracy from the table of mean
refraction) its value for each zenith distance is readily found.
The parallax, which is here sensibly the same (= 57.54) for all
the observations, is subtracted from the refraction, and the results
are given in the column r —p of the following computation.
The numbers in the 3d and 4th columns are found from their
logarithms above; and the last column contains the several
values of the minimum zenith distance of the sun’s lower limb,
formed by adding together the numbers of the preceding columns.
To the mean of these we then apply the sun’s semidiameter, the
meridian declination, and the correction y, which are all constant
for the whole series of observations.
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Obs'd ¢ r—p Am Bn &
40° 840”7 442"1 —16'380".5 42"9 389° 52'55".2
40 216.5 41 9 10 0.7 1.1 58 .8
39 57 28 3 41 8 5 9 .2 0.3 61 .2
39 54 17 2 41 .7 158.9 0.0 60 .0
39 52 33 . 41 6 015 .2 0.0 59 4
39 5234 .5 41 6 019 9 0.0 56 .2
39 54 28 .6 41 .7 215 .0 0.1 55 4
39 58 9 .8 41 8 65 53 .7 0.4 58 .3
40 3 0.3 41 9 10 51 4 1.2 52 .0
40 936. 42 1 17 26 .8 3.2 54 .5
(Lower limb) Mean , = 389 52 57 .10
log 2 ﬂ-iﬂ’ 49 ¢ 9000 Semidiameter = — 16 6 .49
sin 1’ 3 =—1 48 9 .20
“log 4 0.0931 y =+ 0 .10
log y 9.0021 ¢ = 87 48 41 .51

This result agrees precisely with that found before. If we suppose
all the observations to be of the same weight, we can now deter-
mine the probable error of observation. Denoting the difference
between each value of £, and the mean of all by v, and the sum
of the squares of » by [vv], according to the notation used in the
method of least squares, we have

v vy
—1"9 3.61
+1.7 3.24 Mecan error of a single observa-
4.1 16.81 . v ”
iz 9 8.41 tion = n[—] = 2".89
+23 5.29 Mean error of the final value of
—0.9 81 2.89 ,
—1.7 2.89 ==
+ 1.2 1.44
—5.1 26.01
—2 .6 6.76

n = 10, [vv] = 7527

Probable error of a single obs. = 2".89 X 0.6745 = 1".95
“ “ ofg =0 .91 X 0.6745 = 0 .62

It must not be forgotten that the probable error 1”7.95 here
represents the probable error of observation only: a constant error
of the instrument, affecting all the observations, will form no
part of this error; and the same is true of an error in the
refraction.
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178. For the most refined determinations of the latitude,
standard stars are to be preferred to the sun. Their declinations
are somewhat more precisely known ; the instrument is in night
observations less liable to the errors produced by changes of
temperature during the observations; constant instrumental
errors and errors of refraction may be eliminated to a great
extent by combining north and south stars; or errors of declina-
tion may be avoided by employing only circumpolar stars at or
near their upper and lower culminations. In general, errors of
circummeridian altitudes are eliminated under the same condi-
tions as those of meridian observations, since the former are
reduced to the meridian with the greatest precision. See the
- next following article.

For a great number of nice determinations of the latitude by
circummeridian altitudes of stars north and south of the zenith
and of circumpolar stars, see Puissant, Nouvelle Description Géo-
métrique de la France.

174. Effect of errors of zenith distance, declination, and time, upon
the latitude found by circummeridian allitudes.—Difterentiating (289),
regarding A as constant, and neglecting the variations of the
last term, which is too small to be sensibly affected by small
errors of {, we have, since dp = d{, 4 do,

de — d% + ds — 22 (15dt)

2Asint
sin 1”
The errors d7 and d3 affect the resulting latitude by their whole
amount. The coefficient of d¢ has opposite signs for cast and
west hour angles; and therefore, if the observations are so taken
as to consist of a number of pairs of equal zenith distances east
and west of the meridian, a small constant error in the hour
angles, arising from an imperfect clock correction, will be elimi-
nated in the mean. This condition is in practice nearly satisfied
when the same number of observations are taken on each side
of the meridian, the intervals of time between the successive
observations being made as nearly equal as practicable.

An error in the assumed latitude which affects 4 is eliminated
by repeating the computation with the latitude found by the first
computation. An error in the declination which would affect p: |
is not to be supposed.
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175. To determine the limits within which the preceding methods of
reducing circummeridian altitudes are applicable.—First. In the
method of Art. 170 we employ only the ¢ first reduction” (= 4m),
which is the first term of the more complete reduction expressed
by (288). The error of neglecting the ¢ second reduction” (= Bn)
increases with the hour angle, and if this method is to be used it
becomes necessary to determine the value of the hour angle at
which this reduction would be sensible. 'We have

- Bn= A*cot ¢, Z—?m‘“
: : sin 1”

whence if we put b for Bn and

F= V' isin1” tan [
we derive

sin'ht = % Vb (298)

Since Z,=¢ —d, F and A4 are but functions of ¢ and J; and
therefore by this formula we can compute the values of ¢ for
any assigned value of b, and for a series of values of ¢ and 4.
Table VIL A gives the values of ¢ in minutes computed by (298)
when 6=1". That is, calling ¢, the tabular hour angle and ¢
the hour angle for any assigned limit of error b, we have

sin’}tl=—f:- sin? § ¢ == sin*}¢, /b

As the limits are not required with great precision, we may sub-
stitute for the last equation the following:

t=t Vb

If we take b = 0”".1, we have /b = 0.56, or nearly }: hence the
limiting hour angle at which the second reduction amounts to 0"'.1 is
about % the angle given in Table VILA.

ExampLe.—How far from the meridian may the observations
in the example p. 287 be extended before the error of the
method of reduction there employed amounts to 1”7? With
¢ = + 89°, 8 =+ 75° Table VILA gives ¢, = 80". Hence
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rapidly with the zenith distance; and hence in general very small
zenith distances are to be avoided. But the observations may be
extended somewhat beyond the limits of our tables, since the
errors which affect only the extreme observations are reduced in
taking the mean of a series.

FOURTH METHOD.—BY THE POLE STAR.

176. The latitude may be deduced with accuracy from an alti-
tude of the pole star observed at any time whatever, when this
time is known. The computation may be performed by (281);
but when a number of successive observations are to be reduced,
the following methods are to be preferred. If we put

p = tke star’s polar distance,
we have, by (14),

sin A = sin ¢ cos p -} cos ¢ sin p cos ¢

in which the hour angle ¢ and the altitude % are derived from
observation and ¢ is the required latitude. Now, p being small
(at present less than 1° 30’), we may develop ¢ in a series .of
ascending powers of p, and then employ as many terms as we
need to attain any given degree of precision. The altitude
cannot differ from the latitude by more than p: if, then, we put

¢=h—.‘b‘

z will be a small correction of the same order of magnitude as p.
‘We have*

gin g=s8in(h —x) =sin h —xcosh — ] x*sin h 4 } 2%cos h 4 &e.
cos ¢ = cos (h —x) =cos h 4 xsin h — } x?cos h — } x*sin h + &ec.
sin p =p— ip* + &e.
cosp=1—1p*+ &e.

which substituted in the above formula for sin & give
sinh=sinh—zxcosh+ pcostcosh—3 (x*— 2apcost+ p?)sin h -+ &e.

and from this we obtain the following general expression of the
correction :

#P1. Trig. (408) and (406).
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r=pcost—}(2*—2xpcost 4 p*) tanh
+ } (@®*—8x*pcost+ 8xp*— ptcost)
(@ —42*pcost 4 6a?p'—4 xp*cost+ p*) tun A
—&e. (a)

For a first approximation, we take
xr=pcost Q)]

and, substituting this in the second term of (a), we find for a
second approximation, neglecting the third powers of p and z,

' = pcost— }p*sin’t tan A )
Substituting this value in the second and third terms of (a), we
find, as a third approximation,

Z=pcost— }p'sin’t tan A 4- J p* cos ¢ sin’¢ @

This value, substituted in the second, third, and fourth terms of
(a), gives, as a fourth approximation,

2= peost— jphsintttan h - §p cos £ sin't — § p*sintt tan'h
+ i p* (4 —9sin’t) sin*t tan A ©

In these formule, to obtain z in seconds when p is given in
seconds, we must multiply the terms in p? »% and p* by sin 1,
sin? 1”7, sin® 17/, respectively.

. In order to determine the relative accuracy of these formule,
let us examine the several terms of the last, which embraces all
the others. The value of {, which makes the last term of (¢) a
maximum, will be found by putting the differential coeflicient
of (4 — 9 sin*¢) sin’¢ equal to zero; whence :

4sintcost (2 ~9sin’'t)=0

which is satisfied by ¢ = 0, ¢ = 90°, or sin® ¢ = §, the last of which
alone makes the second differential coeflicient negative. The
‘maximum value of the term is, then, & p*sin® 1’ tan A, which
for p = 1° 80’ = 5400”” is 0’7.0018 tan h. This can amount to
077.01 only when & is nearly 80°,—that is, when the latitude is
mnearly 80°. This term, therefore, is wholly inappreciable in
every practical case.
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The term }p*sin®1’ sin*{tan® A is a maximum for sin¢ =1,
in which case, for p = 5400”, it is 0’7.0121 tan®*h. This amounts
to 0.1 when h = 64°, and to 1”’. when A = TT7°.

For the maximum of the term § p*sin?1’’ cos ¢ sin?¢ we have,
by putting the differential coeflicient of cos ¢ sin? ¢ equal to zero,

sint (2 — 8 s8in?t) =0

which gives sin? { = §, and consequently cos ¢ = 1/}; and hence
the maximum value of this term is §p*sin® 1/} = 0//.475.
Since the maximum values of this and the following terms do
not occur for the same value of ¢, their aggregate will evidently
never amount to 1’ in any practical case.

Hence, to find the latitude by the pole star within 1", we have the

formula
¢ =h—pcost - }p*sin 1”gin?ttan A (800)

The hour angle ¢ is to be deduced from the sidereal time ©
of the observation and the star’s right ascension a, by the

formula
t=0 —a

To facilitate the computation of the formula (300), tables are
given in every volume of the British Nautical Almanac and the
Berlin Jahrbuch; but the formula is so simple that a direct
computation consumes very little more time than the use of
these tables, and it is certainly more accurate.

ExaMpLE.—(From the Nautical Almanac for 1861).—On March
6, 1681, in Longitude 87° W., at T* 43» 85' mean time, suppose
the altitude of Polaris, when corrected for the error of the in-
strument, refraction, and dip of the horizon, to be 46° 17/ 28"/ :
required the latitude.

Mean time 7™ 43= 35,
Sid. time mean noon, March 6, 22 56 47.9
Reduction for 7* 43~ 35 1 16.2
Reduction for Long. 2* 28 24.8
Sidereal time = 642 384
March 6, p = 1° 25’ 32".7 - o= 1 7 39.0
t 584 244

83°36' 6”
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Hence, by formula (300),

log p 3.71035 log p* 7.4207
log cos ¢ 9.04704 log sin’t  9.9946
log 1st term 2.75739 log tan & 0.0196
log 3sinl” 4.3845
h = 46° 17’ 28" log 2d term 1.8194

Ist term = — 9 32 .0

2d ¢« =4 1 6.0

=46 9 2.0
By the Tables in the Almanac, ¢ — 46° 9’ 1”

177. If we take all the terms of (e) except the last, which we
have shown to be insignificant, we have the formula

¢=h—pcost+ }p*sin1”’sin*ttan h '
— 3 p*sin?1”cos t sin®*¢ 4 }p*sin®1”sint ¢t tan* A (301)

which is exact within 07.01 for all latitudes less than 75°, and
gerves for the reduction of the most refined observations with
first-class instruments.

If we have taken a number of altitudes in succession, the
separate reduction of each by this formula will be very laborious.
To facilitate the operation, PETERSEN has computed very con-
venient tables, which are given in ScHumacner’s Hiilfstafeln,
edited by WaRNsToRFF. These tables give the values of the
following quantities :

o = p, cos t 4+ {pg sin?1” cos t sin? ¢
8 == p?sin 1" sin* ¢

A ={p(p*—p}) sin® 1” costsin’t
p = 3 p*sin®1” sin*t tan® h

in which p, = 1° 80’ = 5400”". Then, putting

4=2
y
log A = log p — 8.7323938

the formula (301) becomes

¢g=h—(da+2) 4 ABtankh 4 ¢
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Putting then
= Aa 4+ 2
y=ABtan A 4+ p °
we have (802)
p=h—z+y

or, when the zenith distance ¢ is observed,

= Aa+2

y=ABcot L+ n }(303)
90° —p¢p=04+x—y

The first table gives a with the argument ¢; the second, 8 with

the argument ¢; the third, 4 with the arguments p and ¢; and

the fourth, # with the arguments y and ¢, ¢ being used for A4 in

8o small a term.

To reduce a series of altitudes or zenith distances by these
tables, we take for A or { the mean of the true altitudes or
zenith distances; for @ and 3 the means of the tabular numbers
corresponding to the several hour angles, with which we find
Aa and A%3 cot {. The mean values of the very small quanti-
ties A and p are sensibly the same as the values corresponding to
the mean of the hour angles; so that 4 is taken out but once for
the arguments polar distance and mean hour angle, and g is
taken with the arguments ¢ and the approximate value of y =
4?3 cot £. Illustrative examples are given in connection with
the tables.

FIFTH METHOD.—BY TWO ALTITUDES OF THE SAME STAR, OR DIF.
FERENT STARS, AND THE ELAPSED TIME BETWEEN THE OBSERVA-
TIONS.

178. Let S and §’, Fig. 25, be any two points of Fig.25.
the celestial sphere, Z the zenith of the observer,
Pthe pole. Suppose that the altitudes of stars seen
at S and S/, either at the same time or different
times, are observed, and that the observer has the o
means of determining the angle SPS’; also that P “
the right ascensions and declinations of the stars
are known. From these data we can find both the latitude and the
local time. A graphic solution (upon an artificial globe) is indeed
quite simple, and it will throw light upon the analytic solution.
With the known polar distances of the stars and the angle SPS’,

Yor. L—17

S
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from the data h, 7/, 8, &’, and A. I shall give two genéral solu-
tions, the first of which is the one commonly known.

First Solution.—Let the observed points S and S’ be joined
by an arc of a great circle SS’. 1In the triangle PSS’ there are
given the sides PS=90° — 4, PS’ = 90° — &, and the angle SPS’
=1, from which we find the third side SS’ = B, and the angle
PS’S= P, by the formule [Q of Art. 10]

co8 B = sin 8’ sin 3 4 cos &’ cos & cos A
sin B cos P — cos 8’ sin 3 — 8in &' cos 3 cos 2
sin B sin P — cos 8 sin 1

or, adapted for logarithmic computation,

m sin M — sin ¢
m cos M — cos 8 cos 1
co8 B = m cos (M — 8") (305)
sin B cos P = m sin (M — &')
sin B sin P — cos 8 8in 4

In the triangle ZSS’ there are now known the three sides
Z8 = 90° — h, ZS"' =90° — k', S8’ = B, and hence the angle
Z8'S = @, by the formula employed in Art. 22:

ainiQ:\/(coai(lx’-{-h+B)sinl(h'—h+B)) (306)

cos A’ sin B

Now, putting
’ . g=P—Q

there are known in the triangle PZS’ the sides PS’ = 90° — &,

Z8'=90° — I/, and the angle PS’Z =g, from which the side
PZ =90° — ¢, and the angle S’ PZ =1, are found by the formulse

sin ¢ = sin &’ sin A’ + cos &’ cos A’ cos ¢
cos ¢ cos t' = cos 4’ sin A’ — sin &' cos A’ cos ¢
cos ¢ 8in ¢’ = cos &’ sin ¢

or, adapted for logarithmic computation,

n 8in V = sin &'
n cos N = cos A’ cos ¢
8in ¢ = n cos (N — &) (807)
cos ¢ cos ' = n sin (N —8')
cos ¢ sin ¢’ = cos A’ sin ¢
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or, adapted for logarithmic computation, by introducing an
auxiliary angle E,

sin C'sin E = sin § (3 — 3") cog 44

sin Ccos E = cos ¢ (3 4 &) sin 42 } (808)

In the triangle SPT we have the angle PTS= P, and there-
fore in the triangle S’ PT we have the angle PTS’=180° — P,
the cosine of which will be = — cos P: hence, from these
triangles we have the equations

sin D cos C + cos D sin (' cos P = sin 8
sin D cos C — cos D sin C cos P = sin &'

whence
2 sin D cos C = sin & - 8in &8’
2 cos D sin C cos P — sin 8 — s8in &’

sin.D—Sin $(8 4 8")cos } (3 — &)
- cos C

(809)
cos P — %% (84 8)sink (8 —93')

cos D sin C

which determine D and P after C has been found from (308).

In precisely the same manner we derive from the triangles
ZTS and ZTS' the equations

on H — sin ¥ (b + A') cos ¥ (h — R')
cos C

(810)
__cos t(h+ A)sind(h—PN)

cos H sin C

cos Q@

Then in the triangle PTZ we have the angle PTZ, by the
formula

¢=P—Q
and hence the equations

8in ¢ = sin D sin H + cos D cos H cos ¢
cos ¢ cos T = co8 .D sin H — sin D cos H cos ¢
cos ¢ 8in T = cos H sin ¢
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To adapt these for logarithmic computation, let 8 and y be deter-
mined by the conditions*

cos 3 cos y — sin H

cos B sin y = cos H cos ¢
(31D
sin § = cos H sin ¢

then ¢ and r are found by the equations

cos ¢ cos T = cos 8 cos (D + y)
cos ¢ 8in r — sin §

sin ¢ = cos g 8in (D + y)
} (312)
To find the hour angles ¢ and ¢, let
z=r— (' +t)
then, since $ A =13 (¢ —t), we have

4214z =1 —t=the angle TPS,
$A—zx =1t —r=the angle TPS’,

and from the triangles PTS and PTS’ we have

sin (324 x) sin P gin(}A—x) sinP
sin C T cosd sin C " cos &’

whence
sin(#44 ) —sin(42—2x) cosd’ —cosd
sin(44 4 z) 4-sin(34—=x) cosd’ 4 coss

and, consequently,

tanx—=tan} (84 ¢")tan } (3 —48') tan 1 (313)
Hence, finally,
=r—2x—14%2
V=r—x4+ 44 } 1Y)

As in the first solution, the value of ¢ will become = P+ ¢
when the arc joining the observed places of the stars passes north
of the zenith. '

ExampLE.—1856 March 5, in the assumed Latitude 89° 17’ N.
and Longitude 5* 6™ 36 W., suppose the following altitudes

* The equations (311) can always be satisfied, since the sum of their squares gives
the identical equation 1 =1.
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(The auxiliaries C and H are not themselves required: we take
their cosines from the table, employing the sines as arguments.)
We now find, by (311), (312), (318), and (314),

log sin 8 = n9.673029 T = 322° 3¢ 51”.3
log cos § = 9.9455382 r= 114 21.3
r =39°18" 4".0 T—zx=321 16 30
D+ y=45 52 86 .0 = 21» 25 6°
=389 17 20 . tAi= 255 6
: t= 18 380 O
= 0 20 12

agreeing precisely with the results of the first solution.

179. In the observation of lunar distances, as we shall see
hereafter, the altitudes of the moon and a star are observed at
the same instant with the distance of the objects. The ob-
served distance is reduced to the true geocentric distance, which
is the arc B of the above first solution, or 2 C of the second. The
observation of a lunar distance with the altitudes of the objects
furnishes, therefore, the data for finding the latitude, the local
time, and the longitude.

180. (B.) A fized star observed at two different times.—In this case
the declination is the same at both observations, and the general
formulee of the preceding articles take much more simple forms.
The hour angle 4 is in this case merely the elapsed sidereal time
between the observations, the formula (804), since a =a’,
becoming here

A=(T'—T)+ (aT' — aT) (815)

Putting &’ for & in (308) and (309), we find £ =0, cos P=0,
P=90°; and Cand D are found by the equations

sinC=cos dsin 41, sin D= . (316)

Since we have ¢ = P — @ =90° — @, the last two equations of
(811) give

sin § = cos H cos Q, cos y = sin H sec §
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which, by (810), become*

cos § (h 4 h') sin ¥ (h — A"
sin C

ﬂinﬂ:
817
— sin $(h +A') cos ¥ (A —}')

cos
r cos 8 cos C

Then ¢ and r are found by (312), or rather by the following :

sin ¢ = cos 8 8in (D 4 y)

tan 8 - . sin 8 (318)
T= orsint — ——
cos(D—+p) co8 ¢

The hour angles at the two observations are

t=7—1%12
vt } )

Here 7, being determined by its cosine, may be either a posi-
tive or a negative angle, and we obtain two values of the latitude
by taking either D+ y or D —y in (818). The first value will
be taken when the great circle joining the twao positions of the
star passes north of the zenith ; the second, when it passes south
of the zenith.

The solution may be slightly varied by finding D by the
formula

tanD: tan
cos $ 4

(320)

obtained directly from the triangle PTS (Fig. 25), which is right-
angled at 7 when the declinations are equal. We can then dis-
pense with C by writing the formule (817) as follows:

sin g — o $(h+ A)sin (h — 1)
o cos d sin § 4
(821)
__sin} (h+ A)cos } (h —h')sinD

cos y -
cos A 8in é

* The formule (815), (318), and (317) are essentially the same as those first
given for this case by M. CaiLLeT in his Manuel du Navigateur, Nantes, 1818,
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181. (C.) The sun observed at two different times.—In this case
the hour angle 2 is the elapsed apparent solar time. If then the
times 7'and 7" are observed by a mean solar chronometer, and
the equation of time at the two observations is e and ¢’ (positive
when additive to apparent time), we have

A=(T"—T)+ (AT"— aT)—(e'—¢€) (322)

Taking then the declinations ¢ and &’ for the two times of obser-
vation, we can proceed by the general methods of Art. 178.
But, as the declinations differ very little, we can assume their
mean—i.e. the declination at the middle instant between the
observations—as a constant declination, and compute at least an
approximate value of the latitude by the simple formulse for a
fixed star in the preceding articlee. We can, however, readily
correct the resulting latitude for the error of this assumption.
To obtain the correction, we recur to the rigorous formulee of our
second solution in Art. 178. The change of the sun’s declination
being never greater than 1’ per hour, we may put cos } (6 — ¢’)
=1. Making this substitution in (308) and (309), and putting ¢
for } (0 + ¢”) so that ¢ will signify the mean of the declinations,
and ad for } (6" — 0) so that ad will signify one-half the incrcase
of the sun’s declination from the first to the second observation
(positive when the sun is moving northward), we shall have

ad=—13(—29")
tan £ — — E"lA()
cosd tan 3 4

But ad diminishes with 4, so that E always remains a small
quantity of the same order as ad; and hence we may also put
cos E=1. Thus the second equation of (308) gives

sin C = cos dsin §4
and the first of (809)

which are the same as (316), as given for the case where the
declination is absolutely invariable. IIence no sensible error is
produced in the values of C'and D by the use of the mean de-
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clination. But by the second equation of (309) P will no longer
be exactly 90°: if then we put

P=90° 4 AP
we have, by that equation,

sin AP__cosc)sinm)_ sin Ad
" cosDsin C  cos Dsingd
or simply
Ad
AP=—————
cos D sin ¢4

Then, since g =P — @, we have
q=90°—@Q+ aP
The rigorous formula for the latitude is
8in ¢ = sin D sin H - cos D cos H cos ¢

in which when we use the mean declination we take ¢ = 90° —
@Q: therefore, to find the correction of ¢ corresponding to a cor-
rection of ¢ = aP, we have by differentiating this equation, D
and H being invariable,

cos ¢.Ap = — cos D cos H sin ¢.aP

___A«)cosH'cosQ
- sin § 4

‘We have found in the preceding article sin 8 = cos H cos @;
and hence

_ Adsin § N

b9 == o @ sin 32 (323)

In the case of the sun, therefore, we compute the approximate

latitude ¢ by the formule (316), (817), and (818), employing for &

the mean declination. We then find ap by (823) (which in-

volves very little additional labor, since the logarithms of sin 3

and sin }4 have already occurred in the previous computation),
and then we have the true latitude

¢ =19+ ap

If we wish also to correct the hour angle r found by this
method, we have, from the second equation of (47) applied to
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the triangle PTZ (taking b and ¢ to denote the sides PT and
Z T, which are here constant),

A7=OOSHCOBA.AP
o8 ¢
in which 4 is the azimuth of the point 7. But we have in the
triangle PTZ

cos H cos A = sin ¢ cos D cos © — cos ¢ 8in D

Substituting this and the value of aP, we have

Ad
AT = tan ¢ cos r — tan D
sinu( ? )

and, substituting the value of tan D (320),

as ( tan«))
AT = — tan ¢ cos T —
sin § 4 cos § A

‘When this correction is added to z, we have the value that would
be found by the rigorous formule, and we have then to apply
also the correction z according to (814). In the present case we
have, by (3183),

x=——adtan dtan 1

and the complete formule for the hour angles ¢ and ¢’ become

t=r4+ar—zx—1%12
=1'»+Af—x-|-§).
Putting
y=—Aar—2

we find, by substituting the above values of ar and z,

y=M.(tan¢cos-r_ tan ¢ \, (324)
gin § tan § 4

and then we have

V=r4y+4 82
The corrections ap and y are computed with sufficient accu-
racy with four-place logarithms, and, therefore, add but little to
the labor of the computation. Nevertheless, when both latitude
and time are required with the greatest precision, it will be pre-
ferable to compute by the rigorous formulee.
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ExampLe.—1856 March 10, in Lat. 24° N, Long. 80° W,
suppose we obtain two altitudes of the sun as follows, all correc-
tions being applied : find the latitude.

At app. time 0* 30~ h =61°11' 88”3 (3)= — 8° 51' 52".8
« 4 30 K =18 4635 .8 (¥)=—3 47 57 4

$a= 2 0= }(A+H)=39 59 7.1 d8—=—8 49 55 .1
= 80°.0/ $(h—A)=21 1281 .3 ad= -+ 1577

The following is the form of computation by the formule
(316), (317), and (318), employed by Bowbpircu in his Practical
Navigator, the reciprocals of the equations (816) and of the
second of (317) being used to avoid taking arithmetical comple-
ments. This form is convenient when the tables give the secants
and cosecants, as is usual in nautical works.

cosec § A 0.801080

sec & 0000972 . . . . . . e e 4 e e e cosec n1.176024
cosec C 0.802002 cos ‘9937834 . . . . . . . . cos  9.937854
cos 3 (h 4 ) 9.884347  cosec 0.192085 D — — 4° 25' 217.3 cosec n1.112878
sin } (h — K) 9.568428 sec  0.030459 -

sin 8 9.744777 cos 9.919829 . . . . . . . . cos  9.919829
: sec 0.080207 y=— 83 45 88 .0

D4+ y= 29 2016 .7 sin 9.690161

¢= 24° 228”2 sin  9.609990

If the approximate latitude had not been given, we might also
have taken D — y = — 33° 45’ 88/’.0, and then we should have
had

cos § 9.919829
sin (D — r) n9.791113
¢ = — 80° 55’ 44".3 sin ‘¢ n9.710942

To correct the first value of the latitude for the change of
declination, we have, by (323),

log a3 2.0708

sin 8 9.7448
cosec $ 4 0.3010
sec ¢ 0.0394

Ap = — 143”2 log a¢ n2.1560
and hence the true latitude is

¢ =24°2'23".2 — 2'23".2 = 24° 0/ 0"
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which agrees exactly with the value computed by the rigorous
formulee.

The approximate time is found by the last equation of (318)
with but one new logarithm: we have

sin B 9.744777
cos ¢ 9.960596

v = 87° 28’ 23" sin ¢ 9.784181
By (824) and (825), we find
log a8 2.0708 log as 2.0708
cosec ¢4 0.3010 cot $4 0.2386
tan ¢ 9.6494 tan 8 n8.8259

cost  9.8996 — 13”7 nl.1358
483”3  1.9208

y =+ 83".3 — (— 18".7) = + 97"

v4 y=237°30" 0" =2*30~0°
t= 0230=0 ' =4*30~0"

which are perfectly exact.

182. (D.) Two equal altitudes of the same star, or of the sun.—This
case is a very useful one in practice with the sextant when equal
altitudes have been taken for determining the time by the method
of Art. 140. By putting A’ =h in the formule (317), we find
sin 8 =0, cos =1, and hence (318) gives sin ¢ =sin (D + 7), or
¢ =D+ 7y. We have, therefore, for this case, by (320) and (321),

tan ¢ sin h sin D
cosy ——————

tan .D = Y -
cos $4 sin & (326)

¢=Dir

which is the method of Art. 164 applied as proposed in Art. 165.
‘We give r the double sign, and obtain two values of the latitude,
for the reasons already stated.

The time will be most conveniently found by Art. 140. The
method there given is, however, embraced in the solution of the
present problem. For, since we here have sin § = 0, we also
have 7 =0, and the hour angles given by (325) become

t=y— %2
t’=y+§l
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(828), dp = + dh, and the total correction of the latitude
= dh — d8, precisely the same as if the meridian observation
were the only one. Hence there is no advantage in combining
an observation on the meridian with another remote from it, in
the determination of latitude: a simple meridian observation,
or, still better, a series of circummeridian observations, is always
preferable if the time is approximately known.

. When the sun is observed and the mean declination is em-
ployed, putting aéd = } (¢’ — 3), we have dd = ad, d¢’ = — ad,
and, by (332),

__sinA'cosg {sin Acosg A

A — 3
i sin (4’ —A)
which, by substituting
gin 4’ — sin ¢ cos 8 sin 4 =s_m_q’cosd
cos ¢ cos ¢
becomes ,
Ap = — sin (¢ + g)cosd N (333)

gin(4' — 4) cos ¢

This is but another expression of the correction (323).

If, when the sun is observed, instead of employing the mean
declination we employ the declination belonging to the greater
altitude, which we may suppose to be &, we shall have dé = 0,
dd' = — 2 ad; and, denoting the correction of the latitude in
this case by a’p, we have, by (332),

2 8in 4 cos ¢’ ____2singcos ¢ cosd

alg = — — cAd = -
sin (4’ — A4) sin (4’ — 4) cos g

Under what conditions will a’¢ be numerically less than a¢?
First. If both observations are on the same side of the
meridian, the condition a’¢ < ap gives

2 sin ¢ cos ¢’ < sin (¢ + ¢)
or

2 sin ¢ cos ¢’ < sin ¢’ cos ¢ 4 cos ¢’ sin ¢

tang¢ < tan ¢’

whence

which condition is always satisfied when 4 is the greater altitude:
Secondly. If the observations are on different sides of the
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meridian, ¢ and ¢’ will have opposite signs, and we shall have,

numerically, sin (¢’ — ¢) instead of sin (¢’ + ¢). The condition
a’¢ < ag, then, requires that

2 sin ¢ cos ¢’ < 8in ¢’ cos ¢ — cos ¢’ sin ¢
or
tang < § tang’

Therefore a ¢ will be greater than ag only when the observa-
tions are on opposite sides of the meridian and tan ¢ > } tangq'.
In cases where an approximate result suffices, as at sea, and the
correction ag is omitted to save computation, it will be expedient
to employ the declination at the greater altitude, except in the
single case just mentioned.* But to distinguish this case with
accuracy we should have to compute the angles ¢ 'and ¢’; and
therefore an approximate criterion must suflice. Since the
parallactic angles increase with the hour angles, we may substi-
tute for the condition tang > }tan ¢’ the more simple one
> } ', which gives

v —t
t>S—— "
> 2

or (¢ and ¢ being only the numerical values of the hour angles)

t>1

Hence we derive this very simple practical rule: employ the sun’s
declination at the greater altitude, except when the time of this altitude
is farther from noon than the middle time, in which case employ the
mean declination.

The greatest error committed under this rule is (nearly) the
value of ag in (823), when r = ¢{. But since in this case 3t =7,
and ¢+ ¢ =, we have r =} , and therefore sin g =cos ¢ sint
=cos ¢ 8in}A.  This reduces (323) to ap = — }ad sec }4A
Since 4 will seldom exceed 6* ad will not exceed 3’, and the
maximum error will not exceed 1’.6. - In most cases the error
will be under 1/, a degree of approximation usually quite suffi-
cient at sea. Nevertheless, the computation of the correction
ayp by our formula (323) is so simple that the careful navigator

* BowpircH and navigators generally employ in all cases the mean declination;
but the above discussion proves that, if the cases are not to be distinguished, it will
be better always to employ the declination at the greater altitude.
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will prefer to employ the mean declination and to obtain the
exact result by applying this correction in all cases.

SIXTH METHOD.—BY TWO ALTITUDES OF THE SAME OR DIFFERENT
STARS, WITH THE DIFFERENCE OF THEIR AZIMUTHS.

184. Instead of noting the times corresponding to the observed
altitudes, we may abserve the azimuths, both altitude and azi-
muth being obtained at once by the Altitude and Azimuth
Instrument or the Universal Instrument. The instrument gives
the difference of azimuths =2. The computation of the latitude
and the absolute azimuth A of one of the stars may then be
performed by the formule of the preceding method, only inter-
changing altitudes and declinations and putting 180° — A for .
When A4 has been found, we may also find ¢ by the usual methods.

SEVENTH METHOD.—BY TWO DIFFERENT STARS OBSERVED AT THE
SAME ALTITUDE WHEN .THE TIME IS GIVEN.

185. By this method the latitude is found from the declinations
of the two stars and their hour angles deduced from the times
of observation, without employing the altitude itself, so that the result
is free from constant errors (of graduation, &c.) of the instrument
with which the altitude is observed. Let

©, ©' — the sidereal times of the observations,

o, o/ = the right ascensions of the stars,
8, ¢’ — the declinations “ “
t, t' = the hour angles “ “

h = the altitude of either star,
¢ = tho latitudo;

then, the hour angles being found by the equations

t—=6 —a =0 —ad
we have
8in A — sin ¢ 8in & - cos ¢ cos & cos ¢
8in A = 8in ¢ sin &’ 4 cos ¢ cos 3’ cos ¢’

From the difference of these we deduce
tan ¢ (sin 8’ — sin 8) = cos & cos t — cos &' cos ¢/

= } (cos 3 — cos 8") (cos t 4 cos t')
~+ 1 (cos 3 4 cos 8') (cos t — cos t)
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and, by resolving the quantities in parentheses into their factors,

tan ¢ = tan $ (8’4 &) cosd (¥ 4 f)cos} (' —¢)
+cot (3’ —)sind (' +¢t)sind (¥ —1)

If now we put

msin M =sin § (' —t) cot } (8’ — @) 334
mcos M=cos} (' —t)tan} (¢’ 4 9) }( )

we have
tan ¢ = m cos [} (¢ + t) — M) (335)

The equations (334) determine m and M, and then the latitude is
found by (335) in a very simple manner.

. It is important to determine the conditions which must govern
the selection of the stars and the time at which they are to be
observed. For this purpose we differentiate the above expres-
gions for sin A relatively to ¢ and ¢. The error in the hour angles
is composed of the error of observation and the error of the clock
correction. If we put

T, T’ = the observed (sidereal) clock time,
AT = the clock correction,
0T = tho rate of the clock in a unit of clock time,

we shall have
t=T+aT—a, ¢=T+aT+3T(T"—T)—d

Difterentiating these, assuming that the rate of the clock is suffi-
ciently well known, we have

dt =dT + daT, dt' =dT' 4 daT

in which d7; dT’ are the errors in the observed times, andda T
the error in the clock correction. The differential equations are

then
dh — — cos Adyp — cos ¢ 8in AdT — cos ¢8in A daT
dh = — cos A'dy — cos ¢ 8in A'dT" — cos ¢ 8in A’'daT

in which 4 and A’ are the azimuths of the stars. The difference
of these equations gives

de sin 4 sin 4’ sin A’ —sin 4

=— T- dT' 4+ —————=daT
cos ¢ cos 4 —cos 4’ F cos A —cos 4’ T cos A'—cos4
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The denominator cos A —cos A’ is a maximam when one of
the azimuths is zero and the other 180°, that is, when one of the
stars is south and the other north of the observer. To satisty
this condition as nearly as possible, two stars are to be selected
the mean of whose declinations is nearly equal to the latitude,
and the common altitude at which they are to be observed will
be equal to or but little less than the meridian altitude of the
star which culminates farthest from the zenith. It is desirable,
also, that the difference of right ascensions should not be great.

The coeflicient of daT is equal to — cot }(A’ + A), which is
zero when }(A4’ 4 A) is 90° or 270°: hence, when the observa-
tions are equally distant from the prime vertical, one north and
the other south, small errors in the clock correction have no
sensible effect. o ,

When the latitude has been found by this method, we may
determine the whole error of the instrument with which the
altitude is observed; for either of the fundamental equations
will give the true altitude, which increased by the refraction will
be that which a perfect instrument would give.

186. With the zenith telescope (see Vol. II.) the two stars
may be observed at nearly the same zenith distance, the small
difference of zenith distance being determined by the level and
the micrometer. The preceding method may still be used by
correcting the time of one of the observations. If at the ob-
served times 7, 7" the zenith distances are ¢ and ¢’, the times
when the same altitudes would be observed are either

¢—t

T and T+908¢sinA’

or,
¢—2
cos ¢ 8in A

and 7'

where ¢/ — ¢ is given directly by the instrument. With the
bour angles deduced from these times we may then proceed by
(334) and (335).

But it will be still better to compute an approximate latxtude
by the formule (334) and (335), employing the actually observed
times, and then to correct this latitude for the dlﬁerence of
zenith distance.
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By differentiating the formula
tan ¢ (8in 8’ — sin 8) = cos & cos ¢ — cos &’ cos ¢’
relatively to ¢ and ¢, we have
sec’ ¢ (8in 8’ — sin &) dp = cos ¢’ sin ¢' dt’ = sin { sin A’ dt’

Hence, substituting

it =dr = =%
cos ¢ sin 4’
we find
do = $(Z—2¢)sinlcos g (336)

" sin § (8’ — 3) cos (3’ + 9)
and the true latitude will be ¢ + de. '

EIGHTH METHOD.—BY THREE OR MORE DIFFERENT STARS OBSERVED
AT THE SAME ALTITUDE WHEN THE TIME IS NOT GIVEN.

187. To find both the latitude and the clock correction from the clock
times when three different stars arrive at the same altitude.

As in the preceding method, we do not employ the common
altitude itself; and, as we have one more observation, we can de-
termine the time as well as the latitude.

Let S, S’, 8", Fig. 26, be the three points of the celestial

sphere, equidistant from the zenith Z, at which

Fig. 26. the stars are observed. Let
T, T', T" = the clock times of the observations,
s” AT = the clock correction to sidereal time at
the time 7,
z 3T = the rate of the clock in a unit of
& clock time,
a, o', o'’ = the right ascensions of the stars,
3, &', 3" = the declinations “« «
s t, ¢, ¢ = the hour angles “ «
h = the altitude,
¢ = the latitude.
Also, let

A=t —t= 8PS,
V=t'—t=SPS";

then, since the sidereal times of the observations are
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there follows also .
k cos (t + V)= L
. m
and these two equations are of the form treated of in P1. Trig.
Art. 179, according to which, if the auxiliary ¢ is determined by

the condition
tan 8 = — 4 (313)
m

we shall have
tan [t + 3 (N + N’)] = tan (45° — 8) cot } (N'— N)  (34)

which determines {, from which the clock correction is found by
the formula A
AT = a + t— T

The latitude is then found from either (339) or (342).*
To determine the conditions which shall govern the selection
of the stars, we have, as in Art. 185,

dh —= — cos 4 dp — cos ¢ 8in A dT -—cospsin A daT
dh = — cos A’ dp — cos ¢ sin A’ dT' — cos ¢ 8in A’ daT
dh = — cos A" dgp — cos ¢ 8in A”dT"” — cos ¢ sin A"daT

By the elimination of daT7, we deduce the following:
(sin A —sin A’) dh =sin (4’ — A )dp —cos ¢ sin 4’ sin A (dT" — dT')
(sin A’ — sin A”) dh = sin (4" — A’) dp — cos ¢ sin A" sin A’ (dT" — dT")
(sin A” — sin 4 ) dh = sin (4 — A”) dp — cos ¢ sin 4 sin 4" (dT — dT™)
Adding these three equations together, and putting

2K =sgin (4’ — A) + 8in (4” — 4’) + sin (4 — 4")

we find -
d¢ — sin A (sin A” — sin 4’) ar 4 sin A’ (sin 4 — sin 4") i
cos ¢ 2K 2K

sin 4” (sin A’ — sin A) ™

+ 2K

By eliminating dp from the same three equations, we shall find

* This simple and eiegnnt solution is due to Gauss, Monatliche Correspondena, Vol.
XVIIL p. 287.
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a Andromede T = 21*33= 26*
o Urse Minoris T' =21 47 380
e Lyre 7"=22 5 21

The apparent places of the stars were as follows:

o Andromede o — 23* 58 33°.33 ¢ =28° 214”8
a Urse Minoriso' = 0 556 4.70 o' =88 17 5.7
o Lyre o”"=18 30 28.96 0"=238 37 6.6

Hence we find

$i=— b5°18" 25".28 34 = 44° 59’ 55".28

(3 —8= 380 72545 $(3" —3)= 5 17 25 90
3@ 4+ 3= 58 940 .25 1 (3" 4 8)=2383 19 40 .70
log cot § (8' — ) 0.2363973 log cot } (8” — 8) 1.0333869
log sin 34 n8.9661070 log sin 4 X' 9.8494751
log m sin M n9.2025043 log o' sin M’ 0.8828620
log tan } (3' 4 8) 0.2069331 log tan } (8" 4 3) 9.8179461
log cos 14 9.9981343 log cos § ¥ 9.8494949
log m cos M 0.2050674 log m’ cos M"  9.6674410
log tan M n8.9974369 log tan M’ 1.2154210
log cos M 9.9978645 log sin M’ 9.9991963
log m ' 0.2072029 log m/ 0.8836657
M = — 5° 40’ 37".96 M = 86° 30 55".07

JIA—M=N=+0 2212 68 I'—M'=N=—41 30 59 .79

8= 11°53'41"28 log ™ —logtan® 93235872

45° —8= 83 618 .72 log tan (45° — 9) 9.8142617
}(N' —N)=—20 56 86 .24 logcot} (N'— N)  n0.4171063

t+ $(N'+ N)=—59 85 14 .71 log tan [t+ # (N'+ N)]n0.2313680
}(V' + N) = —20 3423 .56

t=—389 051 .15=— 2236~ 341
a= 23 58 33.33
t4+a=6= 21 22 29.92
T= 21 33 26.
Clock correction AT = — 10 56.08

-

Then, to find the latitude, we have
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t + N——238°38'38"47 t+ N'=—80°31'50".94
logcos(t+ N) 9.8926738  logcos(t 4 N') 9.2162110
logm 0.2072029  log m’ 0.8836657
log tan ¢ 0.0998767  log tan ¢ 0.0998767

¢ = 51° 31’ 51”.46

If with these results we compute the true altitude of the
stars, we find from each h = 52° 87’ 21’.2. The refraction was
4277, and hence the apparent altitude = 52° 38’ 3”7.9. The
double altitude observed was, therefore, 105° 16’ 7"7.8. The
index correction of the sextant was — 3’ 30’, and hence the
double altitude given by the instrument was 105° 15’ 25,
which was, consequently, too small by 43’/

To compute the differential equations, we find

A=—298°452 A’ —182°9.1 A" —90°17'9
and hence

dp — + 3808 dT — 0.288 47" — 8.519dT"
- daT=—0391dT — 0.007 dT" — 0.602 d T

by which we see that an error of one second in each of the
times would produce at the most but 7//.6 error in the latitude,
and one second in the clock correction.

188. Solution of the preceding problem by CaeNoLI's formule.—
After Gauss had published the solution above given, he was
himself the first to observe* that Cae~oLr's formule for the
solution of a very different problemt might be applied directly
to this.

‘When the altitude is also computed, CaeNoLI's formule have

slightly the advantage over those of Gauss. To

Fig. 26. (bie). _ deduce them, let ¢, ¢/, ¢’ be the parallactic angles
at the three stars, or (Fig. 26) let
87 q=PS2Z2, ¢'=PS'Z, q"=P8"Z,
% and also put
8 Q =} (PS"S’ _ PS’S")
QI — 4(1) " — PS. u)
s Q"' =31(PS'S — PSS

* Monatliche Correspondenz, Vol. XIX. p. 87.

+ Namely, that of determining, from three heliocentric places of a solar spot, the
position of the sun’s equator, and the declination of the spot.—See CaaxNoLl's
Trigonométrie, p. 488.
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Substituting the values of ¢ and ¢’ in terms of @, this gives
tan (t + $4) = tan }4 tan Q" cot (@ — Q")

or, substituting the value of tan @'/,

207 =9 oot (@ — @) @47y

tan (¢ + “)=cos§(6' + 9)

which determines ¢ + } 2, whence ¢ and the clock correction. We
can now find the latitude and altitude from any one of the
triangles PSZ, PS'Z, PS"Z, by Narier’s Analogies (Sph. Trig.
Art. 80): thus, from P8Z we have

tan § (¢ + ) =080+ (45° + 33)

cost(t—9q) 318y
(
__sin{(t—9q) o
tani(p — 1) -___sini(t—kq) cot (45° + 3 9)

and then =% (¢ +4) + 3 (¢ —h), h=3(p + k) — 1 (p — A).

As all the angles are determined by their tangents, an am-
biguity exists as to the semicircle in which they are to be taken;
but, as Gauss remarks, we may choose arbitrarily (taking, for
example, @, @', @'’ always less than 90°, positive or negative
according to the signs of their tangents), and then, according to
the results, will have in some cases to make the following
changes:

1. If the values of ¢ and k found by (848) are such that
cosg and sink have opposite signs, we must substitute
180° 4 ¢ for g and repeat the computation of these two equa-
tions. In this repetition the same logarithms will occur a8
before, but differently placed.

2. If the values of ¢ and h exceed 90°, we must take their
supplements to the next multiple of 180°.

3. The latitude is to be taken as north or south according
as sin ¢ and sin A have the same or different signs.

No ambiguity, however, exists in practice as to ¢ + 34, found
by (847), since @ — @ can differ from its true value only by
180°, and this difference does not change the sign of cot (@ — @):
hence tan (¢ + 44) will come out with its true sign; and between
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these equations, dh and dy are the same, but d¢ is different for
each. If‘we put

f=T +aT4+3T(T —T)—(a +1)
/=T 4+aT+4+T(T" — T)— (@G +1t) (349)
F1 =T 4 AT 4T (I T — & + )

which are all known quantities, we have
dt=f+daT, dt'=f" 4+ daT,é&e.
and the equations of condition become

dh + cos 4 .dg 4+ 15cos¢sind .daT 4 15cosgsind .f =0

dh + cos A’ .dg + 15cosgsin 4’ .da T+ 15cosgsind’.f/ =0

dh + cos A”.dy + 15cospsinA”.d aT 415 cos psin A". "' =0 (350)
&e.

from which, by the method of least squares, the most probable
values of dh, dp, and daT are determined. The true values of
the altitude, latitude, and clock correction will then be & + dh,
¢ +dp, aAT+daT.

The hour angles will be computed most accurately by (269),
which is the same as the following:

tan'}t=5i" 1C—e¢+Osind(C+ ¢ —9)
cos (X + ¢+ d)cost(C—¢—3)

in which { =90° — %; and the azimuths by

sin }({ —¢+ 3)cost({ —p—9)

= i F e+ Ot Lo —9)

Since ¢ and { are constant, it will be convenient to put

b=1C+9) c=1E—¢)
m__sin(c-{-}c)) ”_sin(b—}o)
" cos(b+49) T cos (c— #9)
then
tan*it = mn tan® § A =$ (851)

The barometer and thermometer should be observed with each
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altitude, and if they indicate a sensible change in the refraction
a correction for this change must be introduced into the equations
of condition. Thus, if r, is the refraction for the altitude A for
the mean height of the barometer and thermometer during the
whole series, while for one of the stars it is r, then the assumed
altitude requires for that star not only the correction dh, but also
the correction r —r,. Hence, if we find the refractions r, 7/, »’/,
&c. for all the observations, and take their mean r,, we have only
to add to the equations of condition respectively the quantities
r— 71y ' —r1, ' —r, &e.

If any one of the stars is observed at an altitude &, slightly
different from the common altitude %, we correct the correspond-
ing equation of condition by adding the quantity A — A,

190. We may also apply the preceding method to the case
where there are but three observations. The final equations are
then nothing more than the three equations of condition them-
selves, from which the unknown quantities will be found by
simple elimination. It will easily be seen that this elimination
leads to the expressions for dp and daT already given on p. 284,
if we there exchange dT, dT’, and dT" for f, f’, and f'’ respect-
ively. We can simplify the computation by assuming a7 so as
to make one of the quantities f, f’, f// zero. Thus, we shall
have f =0 if we determine a7 by the formula

AT =a+t—[T+3T(T— Tp] (352)
then, finding f’ and f’’ with this value, and putting

¥ sin } A’ cos } A’
" sin}(4'—A)sin (4" —4")

- f!

, sin $ A” cos } A”
" sin§(A” — A)sin } (4" — 4')

-
we shall have the following formulee:

daT = —Ksin}(4d + A") + ¥ sin} (4'+ 4)
de ‘
15cos ¢

dh
15cos ¢

= —Kcos} (4 + A") 4 K’ cos } (4'+ A) (353)

=4 Kcos}(4" — A) —K'cos}(4'— 4)
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ExavpLE.—Taking the three observations above employed,
and assuming the approximate values

AT =—11=0, ¢=51°82'0", h=52°870",
we shall find, by (351),

t=—236"550 ¢ =—38"19"55'65 ¢ — 8*23=5R8.25
A= —66°15.2 A= —177° 50".2 A" =90°18'.1

By (349), putting in this case 3T = 0, we then have
f=—18 f' =4 8095 f'—— 621
and the equations of condition (850) become

dh + 0.4027 dp — 8.5410 daT + 15.63 = 0
dh — 0.9998 dp — 0.3522 daT — 28.51 = 0
dh — 0.0053 dg + 9.3308 daT — 57.94 = 0

whence
daT= 4892 do—=—8"58 dh=421"31
and the true values of the required quantities are, therefore,

aT=—1056.08 ¢ =>51°31'51"42 KA = 52°37 21"31

agrecing almost perfectly with the values before found.
Since in this example there are but three observations, we
may also employ the formulee (353), first assuming

AT = — 10~ 58.17
which is the value given by (352). With this we find

f' =+ 82.78 "= —438
log ¥ = 0.4199 log k" = n0.4932

and by (353) we shall find
daT =+ 2:.09 dp = —8"58 * dh =4 21”31

Hence the true clock correction is — 10™ 58.17 4+ 2.09 =
— 10" 56°.08; and the values of the latitude and altitude also
agree with the former values.
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and then, the declination of the star being given, we have the
equation [from (14)]

cos £ 8in ¢ — tan & cos ¢ = sin t cot A (3%)

If, then, A is also known, the latitude ¢ can be found by this
equation. Let us inquire under what conditions an accurate
result is to be expected by this method. By differentiating the
equation, we find [see (51)]

_cosq_foicidt_tantdA sin ¢

= — X dsd
cos I sin 4 sin A cos £ 8in A

from which it appears that sin 4 and cos { must be as great as
possible. The most favorable case is, therefore, that in which
the assumed vertical circle is the prime vertical, and the star's
declination differs but little from the latitude; for we then have
A =190° and ¢ small. Indeed, these conditions not only increase
the denominator of the coeflicient of df, but also diminish its
numerator, since, by (10), we have

cos ¢ cos 8 = sin { 8in ¢ -} cos { cos ¢ cos 4

which vanishes wholly when the star passes through the zenith.
Moreover, if the same star is observed at both its east and west
transits over the prime vertical, we shall have at one transit sin
A = — 1, at the other sin 4 = + 1, and the mean of the two
resulting values of the latitude will, therefore, be wholly free
from the effect of a constant error in the clock times, that is, of
an error in the clock correction. It is then necessary only that
the rate should be known. This method, therefore, admits of a
high degree of precision, and requires for its successful applica-
tion only a transit instrument, of moderate dimensions, and a
time-piece. Its advantages were first clearly demonstrated by
BesseL* in the year 1824; but it appears that very early in the
last century RoMER had mounted a transit instrument in the
prime vertical for the purpose of determining the declinations of
stars from their transits, the latitude being given. The details
of this important method will be given in Vol. IIL, under
“Transit Instrument.”

* Astronom. Nach., Vol. IIL. p. 9.
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193. It may sometimes be possible to observe transits only over
some vertical circle the azimuth of which is undetermined. We
must then observe either two stars, or the same star on opposite
sides of the meridian. We shall then have the two equations

cos ¢ .tan 4 sin ¢ — tan & .tan A cos ¢ = sin ¢
cos ¢ .tan A sin ¢ — tan 8’.tan 4 cos ¢ =sin t'

from which the two unknown quantities 4 and ¢ can be deter-
mined. If the same star is observed, we shall only have to put
8’ = 48. Regarding tan 4 sin ¢ and tan A4 cos ¢ as the unknown
quantities, we have, by eliminating them in succession,

sin sin ¢’ cos 8 — sin ¢’ cos &’ 8in ¢

tan 4 sin ¢ = - -
cos ¢ sin 8’ cos 8 — cos ¢’ cos &’ 8in &

— sin (¢ — t) cos 8’ cos &

tan 4 cos¢p = - -
cos ¢ sin 3’ cos 3 — cos t’ cos &' sin &

If we introduce the auxiliaries m and M, such that

m sin M = sin (8’ 4 8) sin § (¥’ — ¢)
m cos M =sin (§' — 3) cos § (¥ — 1) }(355)

we shall easily find

m sin [} (' + t) — M] =sin ¢ 8in 8’ cos 8 — sin ¢ cos 8’ gin &
mcos [4(t' 4 t) — M] = costsind’ cos § — cos t' cos &’ sin 8
msin [} (' —t) — M] = —sin (' — t) cos 8’ 8in &
and hence
tan 4 sin ¢ = tan [} (¢’ 4 t) — M]

sin [3 (¢ —t) — M] cot 8 (356)
cos [§ (V' 4+ t)— M)

which determine 4 and ¢ by a simple logarithmic computation.
The solution will be still more convenient in the following form :

tan 4 cos ¢ =

tanM:tan&(t’—t)ZZZ—g:i—g

tan ¢ = tan pSin 3¢+ 0 — M)
sin [#(f — t) — M]

tan 4 = tan “(t'?" t) — M]
sin ¢

(357)
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If the same star is observed at each of its tramsits over the
same vertical circle, we have 4’=34, and hence tan M=o,
M = 90°, which gives

tang —tan aSBHEHD g 4 OMEFD  gh
cos § (V' — 1) sin ¢

If the same star is observed twice on the prime vertical, we
must have ¢ 4 ¢ =0, since tan 4 = oo; and then,

tan ¢ __tan L]

tan (= =
cos}(t'—t) cost

(859)

which follows also from (354) when cot A = 0; or, geometrically,
from the right triangle formed by the zenith, the pole, and the
star, as in Art. 19.

If the latitude is given, we can find the time from the transits
of two stars over any (undetermined) vertical circle by the second
equation of (857), which gives

. tan ¢ .

sin[} (' +t) — M]= wan gin [} (' —1t) — M)
for the observation furnishes the elapsed time, and hence ¢ — ¢;
and this equation determines (¢’ + ), and hence both ¢ and 7.

If the latitude and time are given, we can find the declination
of a star observed twice on the same vertical circle, by (358).
‘When the observation is made in the prime vertical, this becomes
one of the most perfect methods of determining declinations.
See Vol. II., Transit Instrument in the Prime Vertical.

194. The following brief approximative methods of deter-
mining the latitude may be found useful in certain cases.

TENTH METHOD.—BY ALTITUDES NEAR THE MERIDIAN WHEN THE
TIME IS NOT KNOWN.

195. (A.) By two altitudes mear the meridian and the chronomelter
times of the observations, when the rate of the chronometer is known,
but not its correction.

Let
h, k' = the true altitudes,

T, T' = the chronometer timncs,
r=4(I"—T)
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then, ¢ and ¢ being the (unknown) hour angles of the observations,
we have, by (287), approximately,

hy=h + at®
h,="H + at*

in which A, is the meridian altitude, and

__225sin 1" cos ¢ cos 3
2 cos h,

The mean of these equations is

R C D)

and their difference gives

h—K=a(—t){+1t)
But we have
r=4(T —T)=4{ —1)

in which we suppose the interval 7”— T to be corrected for the
rate of the chronometer. Hence

v+t i(h—h’)
2 ar

which, substituted in the above expression for A, gives

V72
hy=4(h + K) +ar* + %E-hl (360)
According to this formula, the mean of the two altitudes is
reduced to the meridian by adding two corrections: 1st, the
quantity az? which is nothing more than the common ¢reduc-
tion to the meridian” computed with the half elapsed time as the
hour angle; 2d, the square of one-fourth the dlﬂ'erence of the
altitudes divided by the first correction.
If we employ the form (285) for the reduction, we have

=3+ 1)+ dn 4 BOZBT g
in which
__cos g cosd m— 2sin'§r
" cosh, ~ sinl”

and m is taken from Table V. or log m from Table VI.
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ExampLE 1.—From the observations in the example of Art.
171, I select the following, which are very near the meridian.

Obsd. alts. () True alts. Chronometer.
50° 5 42”8 K = 50°21' 7".6 23* 50 46'.5
50 72656 h = 50 22 50 4 0 037.5
tth—H)= 26 .1 T= 4 556.5
A4+ H)= 50 2159 .0
Am = + 59 .2 log m 1.6790
2d corr. = + 106 logd 0.0930
h,= 50 23 8.8 logAm 1.7720
¢, = 89 3651.2 log[t(h—A)] 2.7958
g, =—1 48 9.2 log2d corr. 1.0238
g = 87 48 42.0

ExampLE 2.—In the same example, the first and last observa-
tions, which are quite remote from the meridian, are as follows:

Obsd. alts. O True alts. Chronometer.

49° 51' 19".3 h = 50° 6 43".7 23* 37= 35

49 50 24 K =50 5 48 4 _0 18 31
*(’I—h’) = 13 .8 T = 20 28

which give Am =16’ 59", and the 2d corr.=10".2, whence
¢ = 87° 48’ 37",

This simple approximative method may frequently be useful
to the traveller, and especially at sea, where the meridian obser-
vation has been lost in consequence of flying clouds. At ses,
however, the computation need not be carried out so minutely

as the above, and the method becomes even more simple. See
Art. 204.

M. V. CAILLET* gives a method for the same purpose, which is
readily deduced from the above. Put

k=K—h '=T"—T=2¢
then (360) becomes

k!
4ar't

k  a7?
hx—h+—2‘+_4—+
g Gray

4a-'?

* Traité de Navigation (2d edition, Paris, 1857), p. 819.
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or, putting 2 gint 3 ¢
m— sin? §

sin 1”7 .

Am = a?'?

ho=h+ (":‘A—‘::")' (362)

in which 4 is the altitude farthest from the meridian. Although
this reduces the two corrections of (361) to a single one, the
computation is not quite so simple.

196. (B.) By three altitudes near the meridian and the chronometer
times of the observations, when neither the correction nor the rate of the
chronometer is known.—In this case we assume only that the chro-
nometer goes uniformly during the time occupied by the observa-
tions. Let

h, k', B = the true altitudes,
T, T', T" = the chronometer times,
T, = the chronometer time of the greatest altitude.

If we introduce the factor for rate =k, according to Art. 171,
the formula for the reduction to the meridian by Gauss’s method
is, approximately,

hl =Ah + akt ) -

in which ¢ is the time reckoned from the greatest altitude. De-
noting ak by @, we have then, from the three observations,

h=~h+oa(T —T)
h=HK+o(T' —T) } (363)
h =K+ o(T'— T2

which three equations suffice to determine the three unknown
quantities a, 7}, and k. By subtracting the second from the
first, and the third from the second, we obtain

’;,—’;=G(T' + T)—2aT,
hl _hll
Iw—_T =¢(T"+ T’) —2GT1

and the difference of these is
hl — h” _ _h —_— hl
T -7 T — T

=a(T"'—T)
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197. (C.) By two altitudes or zenith distances near the meridian
and the difference of the azimuths.—If the observer has no chrono-
meter, he may still obtain his latitude by circummeridian alti-
tudes, if he observes the altitudes with a universal instrument,
and reads the horizontal circle at each observation, taking care,
of course, that the star is always observed at the middle vertical
thread. As this instrument generally gives directly the zenith
distances, we shall substitute ¢ for 90° — A. "We have the equa-
tion

8in ¢ = 8in ¢ co8 { — cos ¢ 8in L cos 4
=sin (¢ —{) + 2 cos ¢ 8in { 8in*} 4

whence

csd(p+8—0)sind[{—(p —3)]=cospsinsin’} 4
But

¢ — 8 = {, = the meridian zenith distance;

and hence
cos ¢ 8in { 8in*} 4
cos [ — (T —¢&)]

sin}(—2%)= (365)
which expresses the reduction to the meridian = ¢ — ¢, when
the absolute azimuth A4 is given. If the observation is very
near the meridian, we may neglect } ({ — ¢,) in the denominator
of the second member, and take

cos p8in{, 2sin’4

E=t= cos 8 sin 1”7
or, putting
cos ¢ 8in {, sin 1”7
= . 366
@ cos ¢ 2 (366)
¢ — ¢ =ad (867)

from which it follows that near the meridian the zenith distance
varies as the square of the azimuth.
Now, when we have taken two observations, we have

C| ={ — aA?

C‘ = C' - aA"
whence, putting

T =}(4' — 4)
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its image, the sextant reading being the same at both observa-
tions, namely, 80° 15’ 0’’. He found

Chronometer.

Contact of lower limb, 4*43= 34+, P.M.
“ upper “ 4 47 5.5
3 81.5

The sun’s diameter was 81’ 82’””. Hence we have

dz = 31" 32" —=1892" log 8.2769
dt = 3=31.5 = 2115 ar. co. log 7.6747

log % 8.8239
¢ = 53° 28'.5 ‘ log cose 9.7755

The azimuth, however, was not exactly 90°, but about 88° 20".
Hence we shall have, more exactly,

9.7755
A = 88° 20 log cosec A 0.0002
¢ =53 22.3 log cos ¢  9.7757

It is evident that the method will be more precise ih high lati-
tudes than in low ones. .

FINDING THE LATITUDE AT SEA.
First Method.— By Meridian Altitudes.

200. This is the most common, as well as the simplest and
most reliable, of the methods used by the navigator. The alti-
tude is observed with the sextant (or quadrant) from the sea
horizon, and, in addition to the corrections used on shore, the
dip of the horizon is to be applied. The true altitude being
deduced, the latitude is found by (277) or (278), Art. 161.

At sea the time is seldom so well known as to enable the
navigator to take the star at the precise instant of its meridian
passage. But the meridian altitude of a star is distinguished as
the greatest, to secure which the observer commences to measure
the star’s altitude some minutes before the approximately com-
puted time of passage, and continues to observe it until he per-
ceives it to be falling. The greatest of all his measures is then
assumed as the meridian altitude.
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The most common practice in the case of the sun is to bring
the lower limb, reflected in the mirrors of the instrument, to
touch the sea horizon seen directly (a few minutes before noon),
and then by the tangent screw to follow the sun as long as it
rises, never reversing the motion of the screw; as soon as the
sun begins to fall, the limb will appear “to dip” in the sea by
lapping over the line marking the horizon. Hence, when the
sun “dips,” the observation is complete, and the instrument is
read off. But, as the waves of the sea cause the ship to rise and
fall, the depression of the sea horizon is constantly fluctuating
by the small amount due to the change in the height of the
observer's eye: it is, consequently, impossible to keep the sun’s
reflected image in constant contact with the horizon. Expe-
rienced observers advise, therefore, to observe and read off
geparate altitudes in rapid succession, continuing until the
numbers read off decidedly decrease; the greatest is then taken
a8 the meridian altitude,* or, still more accurately, the mean of
the greatest and the two immediately adjacent may be taken as
the meridian altitude, free from the inequalities produced by the
motion of the eye.

201. The greatest altitude, however, is not the meridian alti-
tude, except in the case of a fixed star. To find the correction
for a change of declination, we have, for the time (&) from noon
when the sun is at the greatest altitude, the formula (294), or

6 — ad sin (¢ — 8)
810000s8in 1” cos ¢ cosd

in which ad is the hourly change of declination expressed in
seconds. The reduction of the maximum altitude to the meri-
dian altitude is the quantity y, Art. 172, or

__(158)'8in 1" cos ¢ cos
- 2 sin (¢ — &)

y

These formuls give & in seconds of time and y in seconds of arc.
For nautical use, let

a = the change of altitude (expressed in seconds of are) in
one minute of time from the meridian;

* RAPER, Practice of Navigation (4th edition, 1852), p. 226.
Vor. I.—20
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‘or due south at the rate of 18 miles per hour, the maximum
altitude will exceed the meridian altitude by 2’ 15",

Second Method.—By Reduction to the Meridian when the Time is
given.

203. When the meridian observation is lost in consequence
of clouds, circummeridian altitudes may sometimes be obtained.
The most convenient method of reducing them at sea is that of
BowprrcH. In his Table XXXII. he gives the value of a com-
puted by (873); and in Table XXXIII. the value of ¢? ¢ being
reduced to minutes. Each observed altitude A is then reduced
to the meridian altitude %, by the formula (287), or

h,=h + at (375)

and a number of altitudes are reduced at once by the same
formula, by taking for & the mean of all the altitudes, and for ¢?
the mean of all the values of ¢2. If the observer has no tables,
he can readily compute a by the formula

€oS ¢ co8 3

CO8 ¢ Co8 8
sin (¢ —¢)

— [0.2930] (376)

Bowbpircn’s table for ¢* extends, however, only to ¢ =13
When the observations are more than 13" from the meridian,
he reduces the observation to the meridian by the formula (282),

cos {, = sin A + cos ¢ cos & (2sin*}?)

employing a table of log. versed sines for the value of 2 sin*}¢;
a table of natural sines for sin A and cos £,; and the table of
logarithms of numbers for the value of the last term. I prefer
the formula (283),

co8 ¢ cos d sin?}t

cos § (h, + h)

sin } (h, — k) =

which effects the reduction by a single table.

Third Method.—By Two Altitudes near the Meridian when the Time
s not known.

204. As it frequently happens at sea that the local time is
uncertain, the method I have proposed in Art. 195 will be found
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of great use to the navigator. Any two altitudes & and 2’ being
observed near the meridian, v being one-half the chronometer
interval between them, corrected for rate, expressed in minutes,
and a being found by (376), or from Bowpircu’s Table XXXII,
we have the meridian altitude by the formula

h,=*(h+h')+ar’-|—[*(h_h')]’
ar?

which may be computed without the use of logarithms.

ExampLE.—The approximate latitude being 38° N., the de-
clination at noon 1° 48’ 9’/ 8., the height of the eye above the
sea 19 feet, suppose the following observations taken :

Chronometer. o)
T =8 0=22.5 A’ = 50° 10" ¢”
T =8 10 18.5 h =50 11 40
2) 9 51 h—Kk = 1 40
T = 4 55.5 tth—R) = 25
T = 242 1(h+ H)="50 10 50
a = 2"4 ar® = 1st corr. = 58
G —Mpr= 625 €28 —2d « = 11
Merid. alt. © =50 11 59
Dip =— 416
Semidiameter = 4+ 16 6
Refr. and par. = — 42
h =50 28 7

¢, =39 36 53 N.

3, = 1 48 98
¢ =87 48 M4 N.

The accuracy of the result depends in a great degree upon
the accuracy with which the difference of altitude is obtained.
If in the above example this difference had been 2’ 40", or 1’
too great, we should have found }(h — &) = 40", and the 2d
correction = 1§30 — 28’/: consequently the resulting latitude
would have been only 17"/ too small. Since the same causes of
error, such as displacement of the sea horizon by extraordinary
refraction, unknown instrumental errors, &c., affect both altitudes
alike, the difference will usually be obtained, even at sea, within
a quantity much less than /. The most favorable case is that
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in which the altitudes are equal and the 2d correction, conse-
quently, zero. It will be well, therefore, always to endeavor to
obtain altitudes on opposite sides of the meridian.

‘We may also obtain an approximate value of the time from
the same observation; for we have for the hour angle of the
least altitude A/, Art. 195,

or

e =200 yr—m)

Thus, in the above example we have

A=K _ % .

ar 2.4 X 49
HI'—T)=+429
t=4720

The apparent time of the observation of the least altitude was,
therefore, 0* 7™,

. Fourth Method.—By Three Altitudes near the Meridian when the
Time is not known.

205. The method of Art. 196 does not require even the rate
of the chronometer to be known ; but it is hardly simple enough
for a common nautical method. But a very simple method will
be obtained if we take three altitudes at equal intervals of time.
Suppose the second altitude is observed at the (unknown) time
Tfrom the meridian passage, the first at the time 7'— z, the
third at the time 7'+ z; then we have, by (363),

h=h +o(T—2x)
h=Hk +aT*
h=~K~ 4 o(T+ )

Subtracting the half sum of the first and third equations from
the second, we deduce

axt =N — 3 (h + A"
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the error in the latitude produced by an error in the time
increases very rapidly as the star leaves the meridian and ap-
proaches the prime vertical (Art. 166), and the method fails
altogether when the star is in the prime vertical. It may, how-
ever, sometimes be very important to determine the latitude, at
least approximately, when the sun is nearly east or west; and
then the following method may be used.

Sixth Method.—By the change of Altitude near the Prime Vertical.

207. This is the method of Art. 199. In the morning, when
the sun has arrived within 1° of the prime vertical as observed
with the ship’s compass, bring the image of the sun’s upper
limb, reflected by the sextant mirrors, into contact with the sea
horizon, and note the time; let the sextant reading remain un-
changed, and note the time when the contact of the lower limb
occurs. In the afternoon, begin with the lower limb. Then,
taking the sun’s semidiameter = S from the almanac, and put-
ting the difference of the chronometer times = r, we have

28 S
08 ¢ = —= — [9.1249] 2 378
08 ¢ = |~ L 1< (378)

This is evidently but a rough method, only to be resorted to in
cases of emergency. With the greatest care in observing the
contacts, and in latitudes not less than 45°, the result cannot be
depended upon within from five to ten minutes; but even this
degree of accuracy may, in many cases at sea, be quite satis-
factory.

Seventh Method.— By the Pole Star.

208. This method, though confined in its application to north
latitudes, is very useful at sca, as it is available at all times when
the star is visible and the horizon sufficiently distinct, and does
not require a more accurate knowledge of the time than is
usually possessed on shipboard. The complete discussion of it
has been given in Art. 176; but for those who wish only the
nautical method, and have passed over that article, I add the
following simple investigation, which is sufficiently precise for
the purpose.

Let ZN, Fig. 27, be the meridian; Z the zenith of the ob-
server; P the pole ; AN the horizon; S the star, which describes
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.f'f»; 2. a small circle ST about the pole at the dis-
l tance PS=p; ZSA the vertical circle of the
r star at the time of the observation; SA the
‘!D true altitude =k, deduced from the observed;
Ny SPZ the star’s hour angle =1; PN the lati-
tude = ¢.
Draw SB perpendicular to the meridian:
then, since SP is small in the case of the pole
z star (about 1° 30’), we may regard PSB as a
plane triangle, and hence we have

PB = PS.cos SPB=pcost
and, since BN differs very little from S4,
PN—= BN — PB=SA—PB

that is,*
¢=h—pcost
If we put

© = tho sidereal time,

o = the star’s right ascension,
we have

t—=06 —a
and hence
=h—pcos (© —a) (37)

If then p and @ be regarded as constant, the term p cos (© —a)
may be given in a table with the argument ©, as in Bowbprrcr’s
Navigator, p. 206. But the polar distance and right ascension
of the pole star vary so rapidly that in a few years such a table
affords but a rude approximation. The direct computation of
the formula with the values of p and @ obtained from the
Ephemeris for the day of the observation is preferable.

ExamMpLE.—1856 March 10, from an altitude of Polaris ob-
served from the sea horizon, the true altitude A was deduced as
below. The time was noted by a Greenwich chronometer
which was fast 5 80*. The longitude was 150° 0’ W.

* If we compare this with the more exact formula (300), we see that the error of
the nautical method is § p? sin 1" sin? ¢ tan A, which is & maximum for ¢ — 90°.
Taking p = 1° 80’, this maximum is 70”.7 tan ¢, which amounts to 8 when ¢ =
68° 80"
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Chronometer 19* 12= 42¢ h = 81°10".
Correction — 5 30 N

Gr.M. T. 19 7 12 p=1°2718"

Longitudo 10 0 0 = 87’3

Local M. T. 9 7 12 logp 1.9410

Sid. T. Gr. noon 23 13 23 log cost 1n9.5234
Corr. for 19* 7~ 4+ 3 8 logpcost nl.4645 —pcost = 4 29.1

0= 8 23 48 ¢=231 39.1
a= 1 5 44
t= 7 17 59

= 109°29" 45"

Eighth Method.—By Two Altitudes with the elapsed Time between
them.

209. This method may be successfully applied at sea, and is
the most reliable of all methods, next to that of meridian or cir-
cummeridian altitudes. The formule fully discussed in Arts.
178 to 183 may be directly applied when the position of the ship
has not changed between the observations.

But, since there should be a considerable difference of azimuth
between the observations, the change of the ship’s position in
the interval will generally be sufliciently great to require notice.
All that is necessary is to apply a correction to the altitude ob-
served at the first position of the ship, to reduce it to what it would
have been if observed at the second position at the same instant.
To obtain this correction, let Z’, Fig. 28, be Fic. 28
the zenith of the observer at the first observa- "
tion, S the star at that time; Z his zenith at
the second observation, and S’ the star at that
time. The first observation gives the zenith
distance Z'S, the second the zenith distance
Z8'. Joining the points S and S’ with the
pole P, it is evident that the hour angle SPS’ 4
is obtained from the observed difference of &
the times of observation precisely as if the
observer had been at rest. We have, there-
fore, only to find ZS in order to have all the data necessary for
computing the latitude of Z by the general methods.

The number of nautical miles run by the ship is the number
of minutes in the arc ZZ’; and, since this will always be a suffi-

zl

S



314 LATITUDE AT SEA.

ciently small number, if we draw ZA perpendicular to SZ’, we
may regard ZAZ' as a plane triangle, and take

Z8=2'S— AZ'
or
Z8 = 2'S — ZZ' cos Z2'S (380)

The angle ZZ'S is the difference between the azimuth of the
star at the first observation and the course of the ship; and this
azimuth is obtained with sufficient accuracy by the compass.*
Employing the zenith distance thus reduced and the other
data as observed, the latitude computed by the general method
will be that of the second place of observation. In the same
manner we can reduce the second zenith distance to the place of
the first, and then the latitude of the first place will be found.

210. The problem of finding the latitude from two altitudes is -
most frequently applied at sca in the case where the sun is the
observed body, the observation of the meridian altitude having
been lost. The computation is then best carried out by the
formule (315), (316), (317), (318), employing for & the mean
declination of the sun,—i.c. the declination at the middle time
between the two observations,—and then applying to the result-
ing latitude the correction ag found by the formula (323). To
save the navigator all consideration of the algebraic signs in
computing this correction, it will be sufficient to observe the
following rule: 1st. When the sccond altitude is the greater, apply
this correction to the computed latitude as a northing when the
sun is moving towards the north, and as a southing when the sun
is moving towards the south; 2d. When the first altitude is the
greater, apply the correction as a southing when the sun is moving
towards the north, and as a northing when the sun is moving
towards the south.

#If we wish a more rigorous process, we must consider the spherical triangle
ZZ'S, in which we have the observed zenith distance Z'S = ({), the required zenith
distance ZS = {, the distance run by the ship Z’Z = d, the difference of the star’s
azimuth and the ship’s course ZZ'S’ — qa, and hence

cos { = cos {’ cos d + sin {’ sin d cos @
which developed gives
{=1{¢'—dcosa- }d*sin 1” cot {'sin2a

the last term of which expresses the error of the formula given in the text.
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If the computer chooses to neglect this correction, he should
employ the mean declination only when the middle time is
nearer to noon than the time of the greater altitude. In all other
cases he should employ the declination for the time of the
greater altitude (Art. 183).

211. Douwks’s method of “double altitudes.””*—This is a brief
method of computing the latitude from two altitudes of the sun,
which, though not always accurate, is yet sufficiently so when
the interval between the observations is not more than 1*, and
one of them is less than 1* from the meridian.

Let h and &’ be the true altitudes, 8 the declination at the
middle time, 77and 7" the chronometer times of the observa-
tions, ¢ and ¢ the hour angles. The elapsed apparent time 4 is
found from the times 7'and 7" by (322), but it is usually suffi-
cient'to take A= T7"— 7. We then have =1+ 4; and by the
first of (14) we have

sin A = sin ¢ 8in 3 4 co8 ¢ cos 3 cos ¢
sin & = sin ¢ 8in ¢ 4 cos ¢ cos ¢ cos (¢ + 4)

The difference of these equations gives
sin A —sin A’ = 2 cos ¢ cos ésin (¢ + 4 1) sin $2
If we put {, = the middle time, or
t,=t+4 32
sinh —sink’

28inf, —m —— 381
‘ cos ¢ cos ¢ 8in § 4 (381)

we deduce

which gives ¢, by employing the supposed latitude for ¢ in the
second member. We then have

t=t,— 4

and the meridian zenith distance ¢, is found from the greater
altitude A by the formula (Art. 168)

cos §, = 8in A 4 cos ¢ cos & (28in?$¢)

# The method of finding the latitude by two altitudes is commonly called by navi-
gators “‘the method of double altitudes,”—an obvious misnomer, as double means
twice the same.
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and finally the latitude by the formula ¢ =¢, 4 8. Since we
employ an assumed approximate latitude, we shall have to repeat
the process when the computed latitude differs much from the
assumed.

This is the form of the method as proposed by Douwes and
adopted in Bowprrcr’s Navigator; but the following form is still
more simple, as it requires only the table of logarithmic sines.
The formula for ¢, may be written thus:

__cos t(h+ K)sin}(h —A)

sin ¢t
0 o8 ¢ cos & sin $4

then, as before,
t=t,— 424

and the reduction of A to the meridian altitude &, is found by
(283),
co8 ¢ cos & 8in? }¢

cos § (b, 4 h)

sin} (b, — k) =

Adding h,— h to h, we have the meridian altitude, from which
the latitude is deduced in the usual manner. If the greater
altitude is within the limits of circummeridian altitudes, it will
of course be reduced by (284).

The chief objection to this method is that the computation
must be repeated when the assumed latitude is much in error.
It can also be shown that unless the observations are taken as
near to the meridian as we have above supposed, the computed
value of the latitude may in certain peculiar cases be more in
error than the assumed value, so that successively computed
values will more and more diverge from the truth. The methods
referred to in the preceding articles are, therefore, generally to
be preferred.

212. The latitude may also be found from two altitudes by
the simple method proposed by Captain SuMNER, for which see
Chapter VIIL
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on the time at that place be determined at any instant. The
time reckoned at A4 at this last instant is also known from the
correction and rate first found, provided the rate has not changed
in transportation ; and hence the difference of times at the same
absolute instant, and consequently the difference of longitude,
are found.

Let

AT, 3T = the correction and rate determined at 4 at the
time T, by the chronometer,
AT’ = the correction determined at B at the time
T'= T + t, t being the interval by the chro-
nometer ;

then, at the instant 7" 4 ¢ the true time

at 4 is TH+t4+aT+t.8D
“ B T+t4aT

and hence the difference of longitude is
L=aT+t.8T—aT (383)

Thus, the longitude is expressed as the difference of the two
chronometer corrections at the two places; and the absolute
indications of the chronometer do not enter, except so far as
they may be required in determining the interval with which
the accumulated rate is computed. In this expression 47 is the
rate in a unit of the chronometer (an hour, or a day, solar or sidereal),
and 7" — T must be expressed in that unit.

ExaMpLE.—At Greenwich, May 5, mean noon, a mean time
chronometer marks 23* 49" 4275, and its rate in 24 chronometer
hours has been found to be gaining 2.671. At Cambridge, Mass.,
May 17, mean noon, the same chronometer marks 4* 34 47°.28;
what is the longitude of Cambridge?

‘We have

T= May 4,23"49742:75 aT=401017:24 3T —=—26T1
TH+t= « 17, 4 34 4723
t= 124 4245~ 4453 — 124.198
Hence

AT +t.0T = + 0> 9= 4467
aT = — 4 34 47.28
L= 144 44 319
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Nore.—It is proper to distinguish whether the given rate is the rate in a chrono-
meter unit or in a true unit of time; although the difference will not be appreciable
unless the rate is unusually great. If therate is 20 in 24* by the chronometer, it will
be 20° == 02.005 in 24* of solar time.

215. When the chronometer is carried from point to point
without stopping to rate it at each, it is convenient to prepare a
table of its correction for noon of each day at the first station,
from which the correction for the time of any observation at a
transient station may be found by simple interpolation.

After reaching the last station, it is proper to re-determine the
rate, which will seldom agree precisely with that found at the
first. In the absence of any other data affecting the rate, we
may assume that it has changed uniformly during the whole
time. It is convenient to compute the longitudes first upon the
supposition of a constant rate, and then to correct them for the
variation of rate, as follows. Let

AT, 3T = tho correction and rate at the time T, found at
the first station,
8'T = the rate found at the last station at the time
T+ n,
and put
1
o= ¥T—9T (384)
n
then z is the increase of rate in a unit of time. If an observa-
tion at an intermediate station is taken at the time 7'+ ¢, we
must compute the accumulated rate for the interval ¢, which is
effected by multiplying the mean rate during this interval by the
interval. But, upon the supposition of a uniform increase, the
mean rate from the time 7'to the time 7 + ¢ is the rate at the
middle instant 7'+ }¢, and this rate is 67+ }{z. Ilence the
chronometer correction on the time at the first station at the
instant 7'+ ¢ of the supposed observation is

AT+t (8T + 4tr) =aT +t.0T + itz (885)

A longitude assigned to an intermediate station at the time
T + ¢, by employing the original rate 7, will therefore require
the correction + } ¢z, observing always the algebraic signs of x
and the longitude.
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If a number m of chronometers have been employed, and each
determination of a longitude is the mean of the m values which
they have severally given, the longitude assigned upon the sup-
position of constant rates is to be corrected by the quantity
t X r, + x,+ 1, + &e. 4+,

2 m

in which z,, x,, &c. are the increments of the rates of the several
chronometers in a unit of time. If then we put

8 = the sum of all the total increments during the wholo
interval n, or the sum of the values of 8’7 — 8T for
the several chronometers,

s

g=;—

2Zmn
we shall have
Correction of a longitude at a time ' t =¢*.¢ (386)

ExaMpLE.*—In a voyage between La Guayra and Carthagena,
calling on the way at Porto Cabello and Curagoa, the following
observations having been made, the relative longitudes are re-
quired.

By observations at La Guayra on May 22 and 28, the cor-
rections and rates of chronometers ¥, M, and P at the mean
epoch May 24¢.885 were as follows:

AT T
Chron. F. — 4* 33~ 780 + 077
M —4 0 17 40 — 4.54
P. —5 9 43.70 — 147

On arrival at Porto Cabello, the corrections on the mean time
at that place on June 5%.870 were ascertained to be—

A'T
F. — 4* 37~ 15°.80
M. —4 5 31.28
P. —5 14 13.38

At Curagoa the corrections on June 124.890 were—

* SuapweLL, Notes on the Management of Chronometers, p. 111.
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Now, to correct these results for the changes in the rates of
the chronometers, we have, in the interval n = 83.115,

&T — o1
F. + 008
M. . —1.36
P. +1.77
s=-+40.49
and, consequently,
4 0249

g= = + 0002466

2 %X 3 X 33115
Applying the correction ?’¢ to the several results, the true
differences of longitude from La Guayra are found as follows:

Approx. diff. long. ©t.g - Corrected diff. long.
P.Cabello 4 4=16.25 + 0-35 + 471660
Curagoa 4+ 8 3.16 4+ 0.89 4+ 8 405
Carthagena - 34 34.51 + 2.70 + 34 37.21

But it is usually preferable to carry out the result by each
chronometer separately, in order to judge of the weight to be
attached to the final mean by the agreement of the several indi-
vidual values. For this purpose we have here, by the formula
(384), for n = 33.115,

}z
F. -+ 0.00121
M — 0.02054
P. + 0.02673

and hence the correction 4 ¢*. z is, for the several cases, as follows:

P. Cabello. Curacoa. Carthagena.
F 4017 + 044 + 132
M. —2.95 — 741 — 22.52
P. + 3.84 + 9.65 + 29.31

Applying these corrections severally to the above approximate
results, we have, for the differences of longitude from La Guayrs,

P. Cabello. Curagon. Carthagena.
F 4471740 -+ 8= 647 + 84m 42057
M. 16 .52 4 44 87.72
P. 15.90 1.25 31.35
Means 4 4 16.61 48 4.05 4+ 34 37.21

agreeing precisely with the corrected means found above.
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- If the chronometers have been exposed to considerable
changes of temperature, the proper correction may be intro-
duced by the method of Art. 223. .

216. Chronometric expeditions between two points.—Where a dif-
ference of longitude is to be determined with the greatest
possible precision, a large number of chronometers are trans-
ported back and forth between the extreme points. There are
two classes of errors of chronometers which are to be eliminated:
1st, the accidental errors, or variations of rate which follow no
law, and may be either positive or negative; 2d, the constant
errors, or variations of rate which, for any given chronometer,
appear with the same sign and of the same amount when the
chronometer is transported from place to place; in other words,
a constant acceleration, or a constant retardation, as compared
with the rates found when the chronometer is at rest. The
accidental errors are eliminated in a great degree by employing
a large number of chronometers, the probability being that such
errors will have different signs for different chronometers. The
constant errors cannot be determined by comparing the rates at
the two extreme points, since these rates are found only when
the chronometer is at rest; but if the chronometers are trans-
ported in both directions, from east to west and from west to
east, a constant error in their travelling rates will affect the differ-
ence of longitude with opposite signs in the two journeys, and
will disappear when the mean is taken. These considerations
have given rise to extensive expeditions, of which probably the
most thoroughly exccuted was that carried out by STRUVE, in
1843, between Pulkova and Altona.* In this expedition sixty-
eight chronometers were transported eight times from Pulkova
to Altona and back, making sixteen voyages in all, giving the
difference of longitude between the centre of the Pulkova Obser-
vatory and the Altona Observatory 1* 21* 82°.527, with a probable
error of only 0.039.

Chronometric expeditions between Liverpool (England) and

* Expédition chronométrique exécutée par ordre de Sa Majesté L' Empereur Nicolas I.
pour la détermination de la longitude géographique rélative de U'observatoire centrale de
Russie.  St. Petersburg, 1844.

For an account of the carefully executed expedition under Professor Airy to deter-
mine the longitude of Valentia in Ireland, see the Appendix to the Greenwich
Observations of 1845.
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Cambridge (U. 8.) were instituted in the years 1849, 50, ’51, and
’55 by the U.S. Coast Survey, under the superintendence of
Professor A. D. BacHe. The results of the expeditions of 1849,
’50, and ’51, discussed by Mr. G. P. Boxp,* proved the necessity
of introducing a correction for the temperature to which the
chronometers were exposed during the voyages, and particular
attention was therefore paid to this point in the expedition of
1855, the details of which were arranged by Mr. W. C. Boxb.
The results of six voyages,—three in each direction,—according
to the discussion of Mr. G. P. Boxp,t were as follows:

Longitude.
Voyages from Liverpool to Cambridge 4* 32~ 3192
« “ Cambridge to Liverpool 4 32 31.75

Mean 4 32 31.814

with a probable error of 00.19. In this expedition fifty chrono-
meters were used. The greater probable error of the result, as
compared with STRUVE's, is sufliciently explained by the greater
length of the voyages and their smaller number.

217. The following is essentially STRUVE’S method of conduct-
ing the expeditions and discussing the results.

Before embarking the chronometers at the first station (4),
they are carefully compared with a standard clock the correction
of which on the time at that station has been obtained with
the greatest precision by transits of well-determined stars. (See
Vol. IL, ¢ Transit Instrument.”) Upon their arrival at the second
station (B), they are compared with the standard clock at that
station.}] From these two comparisons the chronometer correc-
tions at the two stations become known, and, if the rates are
known, a value of the longitude is found by each chronometer
by (383). But here it is to be observed that the rate of a chro-
nometer is rarely the same when in motion as when at rest. It
is necessary, therefore, to find its travelling rate (or sea rafe, as it
is called when the chronometer is transported by sea). This
might be effected by finding—first, the correction of the chrono-

* Report of the Superintendent of the U. S. Coast Survey for 1854, Appendix No. 42.

+ Report of the Superintendent of the U. 8. Coast Survey for 1856, p. 182.

t For the method of comparing chronometers and clocks with the greatest pre-
cision, see Vol. II.
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meter at the station 4 immediately before starting; secondly, its
correction at B immediately upon its arrival there; and thirdly,
having, without any delay at B, returned directly to 4, finding
again its correction there immediately upon arriving. The dif-
ference between the two corrections at A is the whole travelling
rate during the elapsed time, and this rate would be used in
making the comparison with the correction obtained at B, and
in deducing the longitude by (383).

But, since the chronometer cannot generally be immediately
returned from B, its correction for that station should be found
both upon its arrival there and again just before leaving, and
the travelling rate inferred only from the time the instrument is
in motion. For this purpose, let us suppose that we have found

at the times t, v, v, t,
the chron. corrections a, b, v, a,

the correction a at the station A before leaving; b upon arriving
at B; b’ before leaving B; and @’ upon the return to A. The
times ¢, ¢/, ", ’”’, being all reckoned at the same meridian, if we
now put

m = tho mean travelling rate of the chronometer in a unit
of time,
4 = the longitude of B west of A,

we shall have, upon the supposition that the mean travelling
rate is the same for both the east and west voyages,

=a-+m({t —t)—0>b
A=a —m@"—1t") -V

From these two equations the two unknown quantities m and 2
become known. Putting

r=0—t ="
we find, first,
_(@—a)——=1)

T + 1_H

m (387)

in which the numerator evidently expresses the whole travelling
rate, and the denominator the whole travelling time. Then,
putting
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(@) =a+ mr
we have }(338)
A= (a) —_ b

in which (a) is the interpolated value of the chronometer correc-
tion on the time at A, for the same absolute instant ¢ to which
the correction b on the time at B corresponds.

ExaMpLE.—In the first two voyages of STRUVE's expedition
between Pulkova and Altona in 1843, the corrections of the
chronometer ¢ Hauth 31” were found, by comparison with the
standard clocks at the two stations, as below. The dates are all
in Pulkova time, as shown by one of the chronometers em-
ployed in the comparison:

At Pulkova (A),¢ — May 19, 21»54 a — -+ 0* 63810
« Altona (B), ¢ — “ 24,22.66 b ——1 14 39.92
« Altons (B),¢' = « 26,1072 ¥=—1 14 86.77
« Pulkova (4),t"= « 81, 0.00 a&=+0 T 9.58

Ilence
r = 5% 12012 = 54047, a —a= -4 31'48
7' =4 13 .28 = 4 .553, ¥V—b=+4 38.15

o 3148 — 315 2833
T 5.047 + 4.553 9.6

= 4 20951

a=4 0 6n38.10

mr = + 14.89
(@=4+0 6 52.99
b—=—1 14 39.92

A= (a)—b=+1 21 3291

218. In the above, the rate of the chronometer is assumed to
be constant, and the problem is treated as one of simple inter-
polation. But most chronometers exhibit more or less accelera-
tion or retardation in successive voyages, and a strict interpola-
tion requires that we should have regard to second differences.
If we always start from the station 4, as in the above example,
using only simple interpolation, we commit a small error, which
always affects the longitude in the same way so long as the
variation of the chronometer’s rate preserves the same sign.
But if we commence the next computation with the station B,
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& =b+(5=2

=a+tau(e+v) 4B+ 200 4 P 7Y —2

and we find the erroneous longitude

V=a— ) =2—§7

Hence the error by simple interpolation, commencing with the

station B, is dA’ = — fr't’’; and the error in the mean of the
two longitudes is

. FAV+ Ay = 187 (r — ")

an error which disappears altogether when the intervals r and ¢/’
are equal. Since the voyages are of very nearly equal duration,
it follows that by computing the longitude, as proposed by
STRUVE, commencing alternately at the two stations, the final
result will be free from the effect of any regular acceleration or
retardation of the chronometers.

ExaMpLE.—From the “Expédition Chronométrique” we take
the following values for the chronometer ¢ Hauth 81,” being
the combination next following after that given in the example
of the preceding article, commencing now with the station B, or
Altona:

At Altona (B),t — May 26, 10572 b — — 1» 14= 36277
« Pulkova (4),# = « 81, 000 a=-4+0 7 958
« Pulkova (4),#’ —June 3, 5.62 a'=-40 7 19.36
« Altona (B),t"= “ 17,20.52 b=—114 035

Here
v = 44 134,28 — 44.553 o —b = 4 8642
7'—4 14 .90 = 4 .621 ad—a=+4 9.78

8642 — 078 2664

4.5563 1 4.621 9.174
b= — 1» 14~ 3677
mr=— + 18.22
®)=—1 14 28.55

a=+0 7 958
A=a—()=41 21 33.13

The mean of this result and that of Art. 217 is A= 1* 21= 83.02.
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219. Relative weight of the longitudes determined in different voyages
by the same chronometer.—From the above it appears that the
problem of finding the longitude by chronometers is one of
interpolation. If the irregularities of the chronometer are
regarded as accidental, the mean error of an interpolated value
of the correction may be expressed by the formula*

;‘\/r—f:r' »

where 7 and 7/ have the same signification as in.the preceding
article, and ¢ is the mean (accidental) error in a unit of time.
The weight of such an interpolated value of the correction, and,
therefore, also the weight of a value of the longitude deduced
from it, is inversely proportional to the square of this error, and
may, therefore, be expressed under the form

T4
24

p=k

where £ is a constant arbitrarily taken for the whole expedition,
80 as to give p convenient values, since it is only the relative
weights of the different voyages which are in question.

But if the chronometer variations are no longer accidental,
but follow some law though unknown, a special investigation
may serve to give empirically a more suitable expression of the
weight than the above. Thus, according to STRUVE’S investiga-
tions in the case of certain clocks, the weight of an interpolated
value of the correction for these clocks could be well expressed

by the formulat
_ T4 7\
p_k( o )

But even this expression he found could not be generally applied ;

and he finally adopted the following form for the chronometric
expedition:

pP=— (389)

in which T' is the duration of an entire voyage, including the

* See Vol. II., ‘Chronometer.”
t Expédition Chron., p. 102.
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chronometers are inversely proportional to their mean errors.
The weight P of a longitude L will, therefore, be expressed
generally by

p=t

&e

in which £ is arbitrary. For simplicity, we may assume k=1,
and then by the above value of ¢ we shall have

p= =Dl (392)

[pvv]
If, then, L', L, L'"..... are the values found by the several
chronometers by (390), P/, P"', P'"'.. ... their weights by (392),

the most probable final value of the longitude is

L _ PIL'+PIILII+ PIIILIII+ .....
=P+ P + P +....

(393)
Then, putting

L'—L,=V, L'—L,=V", L" —L,=V" &e.
N = the number of values of L,
E = the mean error of L,
R = tho probable crror of L,
we have
TPV .
F—DIF] R=06745 E (394)
222. 1 propose to illustrate the preceding formule by applying
them to two chronometers of STRUVE's expedition, namely,
“Dent 1774” and “Hauth 31.” In the following table the
longitudes found by beginning at Pulkova are marked P, those
found by beginning at Altona are marked 4, and the numeral
accent denotes the number of the voyage. The weights p in the
second column are as given by STRUVE, who computed them by
the formula (389), taking K = 34560 (the intervals 7} z, ¢/* being
in hours), which is a convenient value, as it makes the weight of
a voyage of nearly mean duration equal to unity; namely, for
T=288, r=1'=120" If we express 7, 7, 7/, in days, we take

34360

=2""" =60
N €
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and we shall have STRUVE’s values of p by the formula

60

= (395)

Thus, for the first voyage, we have, from the data in the example
of Art. 217,

T=1¢"—1t=11%2*46 =114103

v = 54.047 7' = 44553

whence, by (395),
P

60

= =113
11.103 V/(5.047 X 4.553)

The values of L’ and L’ are found by (890). In applying
this formula, it is not necessary to multiply the entire longitudes
by their weights, but only those figures which difter in the
several values. Thus, by “Dent 1774” we have

2051 % 1.10 4 2:.83 X 1.02 + 0-.09 X 1.14 + &e.

L'=1»21= 30
+ 1.10 + 1.02  L14 + &e.

= 121~ 80° 4 2.46

Weight. létl)lngltndec by | gl)nxlmde: by
eto) " "
» Dent 1774, ° e Hauth 31, ° e

Pt 1.13 16 21 321,91 + 030 0.102
Al 1.06 83.18 | 4 0.52 0.287
pu 1.10 | 1*21m 32:.561 |4 00.05 | 0.008 33.86 | +0.75 0.619
Al 1.02 82.83 |4 0.87 | 0.140 83.12 | 4 0.51 0.2656
P | 1.14 82.09 | —0.37 | 0.166 82.66 | — 0.06 0.004
Al 1.05 82.26 | — 0.21 | 0.046 81.66 | —1.06 1.158
Piv 1.19 81.69 | —0.770.706 82.7 +0.09 0.010
Alv | 0.96 82.77 [ 4 0.810.092 84.16 | 4+ 1.565 2.306
Pr 1.09 82.79 (4 0.33|0.119 82.23 [ —0.38 0.167
Av 0.80 82.64 | 4 0.08 | 0.0056 81.66 | —0.96 0.737
vt 1.00 82.94 |+ 0.48 | 0.230 83.88 | 4+ 0.77 0.693
Al 1.10 81.93 | —0.58 | 0.809 81.97 | —0.64 0.461
Pvit | 1,20 82.84 ' —0.120.017 83.16 | 4 0.55 0.363
Avit | 1,09 82.95 | 4 0.49 | 0.262 81.78 | — 0.83 0.751
Pt | 0.76 81.86 [ —0.60|0.274 80.92 [ —1.69 2.171
Avit | 0.41 83.77 |4 1.81|0.704

L' =1» 21m 32:. 46 [pvo] = 8,065 L'=14 21" 320.61 [por]=9.974

n=14 [r] = 18.91 n=15 [2] = 16.69
18 % 18.91 14 % 15.69
= — §9. "= 20 = 22.02
P 8.063 69.04 P 9.974
=8 _ o 009 PR T
JPI “l}ll
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Combining these two results, we have, by (393),

0246 % 59 4 0°.61 X 22

— 15 L » — 1» - .
L,=1* 21~ 32" 4 59 1 22 = 1* 21= 32+.501
with the probable error, by (394),
R = + 0067

This agrees very nearly with the final result from the sixty-eight
chronometers.

223. In the preceding method, the sea rate is inferred from
two comparisons of the chronometer made at the same place
before and after the voyages to and from the second place; and
the correction of the chronometer on the time of the first place
at the instant when it is compared with the time of the second
place is interpolated upon the theory that the rate has changed
uniformly. This theory is insufficient when the temperature to
which the chronometer is exposed is not constant during the
two voyages, or nearly so. I shall, therefore, add the method
of introducing the correction for temperature in cases where
circumstances may seem to require it.

According to the experience of M. Lieusson, the rate m of a
chronometer at a given temperature ¢ may be expressed by the
formula (see Vol. IL., ¢ Chronometer”)

m=m, + k(8 — 85" — Kt (396)

in which &, is the temperature for which the balance is compen-
sated, m, the rate determined at that temperature at the epoch
t=0, t being the time from this epoch for which the rate m is
required, k£ the constant coeflicient of temperature, and %’ that
of acceleration of the chronometer resulting from thickening of
the oil or other gradual changes which are supposed to be pro-
portional to the time.

It is evident that, since every change of temperature produces
an increase of m, the term k(¢ — &,)* will not disappear even when
the mean value of ¢ is the same as J,. It is necessary, therefore,
to determine the sum of the effects of all the changes. Let us,
therefore, determine the accumulated rate for a given period of
time 7. Let m, be the rate at the middle of this period, in which
case we have in the formula {=10. A strict theory requires that
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we should know the temperature at every instant; but, in defanlt
of this, let us assume that the period r is divided into sufficiently
small intervals, and that the temperature is observed in each.
Let us suppose n equal intervals whose sum is 7, and denote the
observed values of & by 8@, 3@, §®. ... 8", The rate

in the lst interval is [m, -+ k (3 — 5,7 X —
“ 2« [m k(IO —8)] X -

&ec. &e.
in the nth interval is [m, + k (8% — 8,7 X —

and the accumulated rate in the time r is the sum of these
quantities,

=myr+ kZ, (% — ﬂo)’;‘-

where I, (# —9,)* denotes the sum of the n values of (§ — &,
To make this expression exact, we should have an infinite number

of infinitesimal intervals, or we must put ’—:= dr, and substitute

the integral sign f for the summation symbol 2': thus, the exact

expression for the whole rate in the time  is
mgr + k [ (3 — dpydr (397)

This integral cannot be found in general terms, since & cannot
be expressed as a function of r; but we can obtain an approxi-
mate expression for it, as follows. Let &, be the mean of all the
observed values of ¢; then we have

“:u ('9 - '90)": S.. [('91 - '90) + % — ’91)]’
=2 3=+ 3200 —8)(F—9) + 20— a)
in which &, — &, is constant, and, therefore, for n values we have
I (3-8 y=n(8—9,). Moreover, since &, is the mean of all
the values of &, we have I, (& — &,) =0, and, consequently, also
T2 —8)¢—98)=2(,—9d) X, (#—8)=0; and the above
expression becomes

S" (v? —_ 190)’ =n (v?. —_ 190)’ + 2“ ('9— '91)’
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Hence, also,
S8y t=c(— o)+ 50 —8)<

or, for an infinite value of n,
Ji@—sydr=rc(0,—8)+ [ (3—9)dr

Thus, the required integral depends upon the integray;Y (P —9,)dr,

which may be approximately found from the observed values of
¥ by the theory of least squares. For, if we treat the values of
¥ — &, as the errors of the observed values of ¢, and denote the
mean error (according to the received acceptation of that term
in the method of least squares) by ¢, we have

_ I8y

3
¢ n—1

(398)
in which z is the actual number of observed values of #. If we
assume that a more extended series of values, or indeed an infi-
nite series, would exhibit the same mean error (which will be
the more nearly true the greater the number n), we assume the

general relation
5,3 —8)y=E—1)e

in which N is any number. Hence, also,

N—-1
Zy (3 — 00’%:?6’ -
and, making IV infinite,
ST —syde=-e (399)

Substituting this value, the formula (397) becomes

m,t + kt (9 — 8,)*+ kre?
or [my 4 k (8, — 8,)* + ke’lr (400)

from which it appears that my+ & (J,— &,)* + ke* is the mean rate
in a unit of time for the interval 7, m, being the rate at the
middle of the interval for a temperature # =4,. For any subse-
quent interval 7/, we must, according to (396), replace m, by
my,— k't, t being the interval from the middle of r to the middle
of 7/,
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Now, let us suppose that the chronometer correction is obtained
by astronomical observations at the station 4, at the times T}
and T, before starting upon the voyage, and again after reaching
the station B, at the times 7y and 7, these times being all
reckoned at the same meridian. Let a,, a,, ay, a,, be the observed
corrections, and put

T,— T,=r, T,—T,=7, T,—T,=1"

so that = and 7’/ are the shore intervals and 7z’ the sea interval.
Let the adopted epoch of the rate m, be the middle of the sea
interval 7/; then, by (400), with the correction ’¢, the accumu-
lated rates in the three intervals are

T

a,—al=[mo+k’( 2f,) -{-k(v?l —'90)’—{-1:(3’ 1t

A+ a,—a,=[m, +h( —9)+ k)7 ) (401)

a4, — ay= [my—¥ ('"—';"' )+ k(8" — B+ ke"1] "

in which &,, 4,/, ¥,/ are the mean temperatures in the intervals
7, 7/, v/, and ¢, ¢/, ¢/ are found by the formula (398). These
three equations determine the three unknown quantities my, ¥,
and . If we put

al

f= —j"-‘ — k(8, — 8,y — ke?

a, —a
= —‘7—' — k(3 —9)t — ke

we have, from the first and third equations,

_ f_fll
"I“r'+i(f+1")

m,

= f—';—f + K (' —1)
which substituted in the second equation gives 2. If, however,
we prefer to compute the approximate longitude without con-

sidering the temperatures, and afterwards to correct for tempe-
rature, we shall have
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second signal the observers at B and Cthe times 4’ and c; at
the third signal the observers at C'and D the times ¢’ and d; it
is evident that the time at 4 when the third signal is made is
a + (' — b) + (¢/— ¢), at which instant the time at D is d: hence
the difference of longitude of 4 and D is

i=a+ F—b)+(@—c)—d (403)

and so on for any number of intermediate stations. It is re-
quired of the intermediate chronometers only that they should
give correctly the differences &’ — b, ¢’ — ¢, for which purpose
only their rates must be accurately known. The daily rates are
obtained by a comparison of the instants of the signals on suc-
cessive days. Small errors in the rates will be eliminated by
making the signals both from west to east and from east to
west, and taking the mean of the results.

The intervals given by the intermediate chronometers should,
of course, be reduced to sidereal intervals, if the clocks at the
extreme stations are regulated to sidereal time.

ExaMpPLE.—From the Description Géométrique de la France
(Puissant). On the 25th of August, 1824, signals were observed
between Paris and Strasburg as follows:

Paris. Intermediate Stations. Strasburg.
T _————
A B ¢ D

19* 6= 20°.3 8* 49= 48:.2
8 54 10.8 9* 16~ 0.2
9 30 37.8 19* 46= 514

The correction of the Paris clock on Paris sidereal time was
—86°.2; that of the Strasburg clock on Strasburg sidereal time was
— 27.7. The chronometers at B and C were regulated to mean
time, and their daily rates were so small as not to be sensible in
the short intervals which occurred.

‘We have

¥—b= 4=22'6
d—c=14 387.6

Mean interval =19 0.2
Red. to sid. int. = 4 3.1

Sid. interval =19 8.3
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Paris clock 19* 6= 20~.3 Strasburg clock 19* 46= 51°.4
Correction — 36 .2 Correction — 277
Paris sid. time 19 5 44.1 Strasburg sid. time 19 46 23.7
Sid. interval +19 8.3
Paris sid. time of the

last signal } 19 24 474
Strasburg do. 19 46 23.7

A= 0*21= 363

In the survey of the boundary between the United States and
Mexico, Major W. II. Emory, in 1852, employed flashes of gun-
powder as signals in determining the diff. of long. of Frontera
and San Elciario.*

The signals may be given by the keliotrope of Gauss, by which
an image of the sun is reflected constantly in a given direction
towards the distant observer. Either the sudden eclipse of the
light, or its reappearance, may be taken as the signal; the
eclipse is usually preferred.

Among the methods by terrestrial signals may be included
that in which the signal is given by means of an electro-tele-
graphic wire connecting the two stations; but this important
and exceedingly accurate method will be separately considered
below.

L}

225. Celestial Signals.—Certain celestial phenomena which are
visible at the same absolute instant by observers in various parts
of the globe, may be used instead of the terrestrial signals of the
preceding article: among these we may note—

a. The bursting of a meteor, and the appearance or disappear-
ance of a shooting star.—The difficulty of identifying these
objects at remote stations prevents the extended use of this
method.

b. The instant of beginning or ending of an eclipse of the
moon.—This instant, however, cannot be accurately observed,
on account of the imperfect definition of the earth's shadow. A
rude approximation to the difference of longitude is all that can
be expected by this method.

¢. The eclipses of Jupiter's satellites by the shadow of that
planet.—The Greenwich times of the disappearance of each

# Proceedings of 8th Meeting of Am. Association, p. 64.
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satellite, and of its reappearance, are accurately given in the
Ephemeris: so that an observer who has noted one of these
phenomena has only to take the difference between this observed
local time of its occurrence and the Greenwich time given in the
Ephemeris, to have his absolute longitude. With telescopes of
different powers, however, the instant of a satellite’s disappear-
ance must evidently vary, since the eclipse of the satellite takes
place gradually, and the more powerful the telescope the longer
will it continue to show the satellite. If the disappearance and
reappearance are both observed with the same telescope, the
mean of the results obtained will be nearly free from this error.
The first satellite is to be preferred, as its eclipses occur more
frequently and .also more suddenly. Observers who wish to
deduce their difference of longitude by these eclipses should use
telescopes of the same power, and observe under the same
atmospheric conditions, as nearly as possible. But in no case
can extreme precision be attained by this method.

d. The occultations of Jupiter’s satellites by the body of the
planet.—The approrimale Greenwich times of the disappearance
behind the disc, and the reappearance of each satellite, are given
in the Ephemeris. These predicted times serve only to enable
the observers to direct their attention to the phenomenon at the
proper moment.

e. The transits of the satellites over Jupiter’s disc.—The ap-
proximate Greenwich times of “ingress” and ‘“egress,” or the
first and last instants when the satellite appears projected on
the planet’s disc, are given in the Ephemeris.

J. The transits of the shadows of the satellites over Jupiter's
disc.—The Greenwich times of “ingress” and ‘egress” of the
shadow are also approximately given in the Ephemeris.

g. Among the celestial signals we may include also eclipses
of the sun, or occultations of stars and planets by the moon, or,
in general, the arrival of the moon at any given position in the
heavens; but, in consequence of the moon’s parallax, these
eclipses and occultations do not occur at the same absolute in-
stant for all observers, and, in general, the moon’s apparent
position in the heavens is affected by both parallax and refrac-
tion. The methods of employing these phenomena as signals,
therefore, involve special computations, and will be hereafter
treated of. See the general theory of eclipses, and the method
of lunar distances.
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THIRD METHOD.—BY THE ELECTRIC TELEGRAPH.

226. It is evident that the clocks at two stations, 4 and B,
may be compared by means of signals communicated through
an electro-telegraphic wire which connects the stations. Sup-
pose at a time T by the clock at 4, a signal is made which is
perceived at B at the time 7" by the clock at that station. Let
aT and a7" be the clock corrections on the times at these sta-
tions respectively (both being solar or both sidereal). Let x be
the time required by the electric current to pass over the wire;
then, A being the more easterly station, we have the difference
of longitude 2 by the formula

A=(T+aT)—(T'+aT) +z=1,+2

Since z is unknown, we must endeavor to eliminate it. For
this purpose, let a signal be made at B at the clock time 7",
which is perceived at A at the clock time 7"’/ ; then we have

l=(T”’+AT”’)—(T"+AT")—x:l,—z

In these formulee 2, and 4, denote the approximate values of the
difference of longitude, found by signals east-west and west-east
respectively, when the transmission time z is disregarded; and
the true value is

A=1 4+ 4)

Such is the simple and obvious application of the telegraph to
the determination of longitudes; but the degree of accuracy
of the result depends greatly—more than at first appears—
upon the manner in which the signals are communicated and
received.

Suppose the observer at 4 taps upon a signal key* at an exact
second by his clock, thereby producing an audible click of the
armature of the electro-magnet at B. The observer at B may
not only determine the nearest second by his clock when he
hears this click, but may also estimate the fraction of a second;
and it would seem that we ought in this way to be able to deter-
mine a longitude within one-tenth of a second. But, before even
this degree of accuracy can be secured, we have yet to eliminate,
or reduce to a minimum, the following sources of error:

* See Vol. IL,,  Chronograph,” for the details of the apparatus here alluded to.
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server indicates it by another preconcerted signal, the chrono-
graphs are stopped, and the record is suitably marked with date,
name of the star, and place of observation, to be subsequently
identified and read off accurately by a scale. When the star
arrives at the meridian of B, the transit is recorded in the same
manner upon both chronographs.

Suitable observations having been made by each observer to
determine the errors of his transit instrument and the rate of
the clock, let us put

T, = the mean of the clock times of the eastern transit of
the star overall the threads, as read from the chrono-
graph at 4,

T, = the same, as read from the chronograph at B,

T = the mean of the clock times of the western transit of
the star over all the threads, as read from the chrono-
graph at A4,

T, = the same as read from the chronograph at B,

¢, ¢ = the personal equations of the observers at 4 and B
respectively,

7,7 = the corrections of 7, and T} (or of 7,and 7)) for
the state of the transit instruments at 4 and B, or
the respective “reductions to the meridian” (Vol. IL,
Transit Inst.),

3T = the correction for clock rate in the interval 7 — T,

x = the transmission time of the electric current between
A and B,
A = the difference of longitude;

then it is casily seen that we have, from the chronographic
records at 4, .

A=T'4+8T+7+é—x—(T,+t+e
and from the chronographic records at B,
A=T!4+8T+7+eé+z—(T,+*+¢
and the mean of these values is
A=+ T +P1— B (T4 T 714+ 8T+ €—e (404)
which we may briefly express thus:

).=2,+e’—-e,
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in which

4, = the approximate difference of longitude found by the
exchange of star signals, when the personal equations
of the observers are neglected.

This equation would be final if ¢/ — e, or the relative personal
equation of the observers, were known: however, if the observers
now exchange stations and repeat the above process, we shall
have, provided the relative personal equation is constant,

A=2+e—¢

in which 4, is the approximate difference of longitude found as
before; and hence the final value is

2= 1+ 4)

I have not here introduced any consideration of the armature
time, because it affects clock signals and star signals in the same
manner; and therefore the time read from the chronographic
fillet or sheet is the same as if the armature acted instants-
neously.* It is necessary, however, that this time should be
constant from the first observation at the first station to the
last observation at the second, and therefore it is important that
no changes should be made in the adjustments of the apparatus
during the interval.

As the observer has only to tap the transits of the star over
the threads, the latter may be placed very close together. The
reticules prepared by Mr. W. WURDEMANN for the Coast Survey
have gencrally contained twenty-five threads, in groups or “tal-
lies” of five, the equatorial intervals between the threads, of a
group being 2.5, and those between the groups 5'; with an ad-
ditional thread on each side at the distance of 10* for use in ob-
servations by “eye and ear.” Except when clouds intervene
and render it necessary to take whatever threads may be avail-
able, only the three middle tallies, or fifteen threads, are used.
The use of more has been found to add less to the accuracy of 8

* Dr. B. A. Gourp thinks that the armature time varies with the strength of the
battery and the distance (and consequent weakness) of the signal; being thus liable
to be confounded with the transmission time. The effect upon the difference of
longitude will be inappreciable if the batteries are maintained at mearly the same
strength.
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ent upon the strength of the batteries; the velocities from signals
east-west and signals west-east coming out more and more
nearly equal as the strength of the batteries was increased. See
Dr. Gourp’s Report on telegraphic determinations of differ-
ences of longitude, in the Report of the Superintendent of the
U. 8. Coast Survey for 1857, Appendix No. 27.

FOURTH METHOD.—BY MOON CULMINATIONS.

229. The moon’s motion in right ascension is so rapid that
the change in this element while the moon is passing from
one meridian to another may be used to determine the difference
of longitude. Its right ascension at the instant of its meridian
transit is most accurately found by means of the interval of
sidereal time between this transit and that of a neighboring well-
known star. For this purpose, therefore, the Ephemerides con-
tain a list of moon-culminating stars, which are selected for each
day so that at least four of them are given, the mean of whose
declinations is nearly the same as that of the moon on that day,
and, generally, so that two precede and two follow the moon.
The Ephemerides also contain the right ascension of the moon’s
bright limb for each culmination, both upper and lower, and
the variation of this right ascension in one hour of longitude,
—i.e. the variation during the interval between the moon’s
transits over two meridians whose difference of longitude is one
hour. This variation is not uniform, and its value is given for
the instant of the passage over the meridian of the Ephemeria.
These quantities facilitate the reduction of corresponding obser-
vations, as will be seen below.

230. As to the observation, let

8, ¢ = the sidereal times of the culmination of the moon’s
limb and the star, respectively, corrected for all the
known errors of the transit instrument, and for clock
rate,

a, o/ = the right ascensions of the moon’s limb and the star
at the instants of transit;

then we evidently have

a=q 88— (406)

e
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232. Corresponding observations at places whose difference of longi-
tude is less than two hours.—At each place the true sidereal times
of transit of the moon-culminating stars and of the moon’s
bright limb are to be obtained with all possible precision: from
these, according to the formula (406), will follow the right as-
cension of the moon’s limb at the instants of transit over the
two meridians, taking in each case the mean value found from
all the stars observed. Put

L,, L, = tho approximate or assumed longitudes,
A = the true difference of longitude,
a,, a, = the observed right ascensions of the moon’s bright
limb at L, and L, respectively,
H, = the variation of the R. A. of the moon’s limb for
1* of longitude while passing from L, to L,;
then we have
_ a, — a, 4
A= ———110 (407)
in which, a, — &, and H, being both expressed in seconds, 4 will
be in hours and decimal parts.

‘When the difference of longitude is less than two hours, it
is found to be sufficiently accurate to regard H, as constant,
provided we employ its value for the middle longitude
L, = } (L, + L,), found by interpolation from the values in the
Eplemeris, having regard to second differences.

ExampLe.—The following observations were made, May 15,
1851, at Santiago, Chili, by the U. S. Astronomical Expedition
under Lieut. GiLLiss, and at Philadelphia, by Prof. KExpaLL:

Object. - Santiago sid. time. Philad’a sid. time.
¢ Librae 15* 46~ 3+.37 15* 45= 22433
Moon II Limb 16 21 36.84 16 21 39.11
B. A. C. 5579 16 33 40.12 16 32 58 .96

‘We shall assume the longitudes from Greenwich to be,
Philadelphia, L‘ =5 0~ 3985
Santiago, =4 42 19.

the longitude of Philadelphia belng that which results from the

last chronometric expeditions of the U. S. Coast Survey, and
that of Santiago the value which Lieut. GILLIss at first assumed.



BY MOON CULMINATIONS. 355

i which the value of H must be that which belongs to the
uncertain meridian L, or, more strictly, H must be taken for
the mean longitude between L, and L, + aL; but, as aL is
generally very small, great precision in H is here superfluous.
However, if in any case aL is large, we can first find H for the
meridian L,, and with this value an approximate value of aL;
then, interpolating H for the meridian L, + } aL, a more correct
value of aL will be found.*

ExampLe.—The following observations were made May 15,
1851, at Santiago and Greenwich:

Object. Santiago. Greenwich.
8 Librae 15 46~ 337 15 45= 22-.37
Moon II Limb 16 21 36.84 16 9 39.41
B.A.C. 5579 16 33 40.12 16 32 59.17

We assume here, as in the preceding example, for Santiago
L, = 4* 42~ 19, and for Greenwich we have L, = 0. The places
of the stars being as in the preceding article, we find for

Greenwich, o, = 16* 9= 39°.54
Santiago, o, =16 20 55.99
o,—a, = 11 16 .45

The computed right ascension for Greenwich is in this case
simply that given in the Ephemeris for May 15; the increase to
the meridian 4* 42= 19.0 has been found in our example of in-
terpolation, Art. 71, to be

A, — A, =11~1584

and hence
y =+ 0-.61
We find, moreover, for the longitude 4* 42 19,
H = 14377
whence
3600
=4+ 061 X ——— = 4 15"
AL= 1 061 X g = + 15228

By these observations we have, therefore,
Longitude of Santiago — 4* 42 34.28

* This method of reducing moon culminations was developed by WaLkeR, Trans-
actions of the American Philosophical Society, new series, Vol. V.
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or as follows: Let 7j and 7,+ 1* be the two Greenwich hours
between which a, falls, and put

aa = the increase of right asccension in 1* of mean timo at
the time 7,

da = the increasc of Aa in 1%,

a, = the right ascension of the Ephemeris at the hour T,

then, by the method of interpolation by second differences, we

have
da T-—T(T—T
u=¢+ e | 0 1 0
1% [“+2 3600] 60 )

in which the interval T, — T, is supposed to be expressed in
seconds. This gives

T T,— Gogc‘;ao)T
e 4, — 4o
8¢t 3 600

and in the second member an approximate value of 7 may be
used, deduced from the local time of the observation and an
approximate longitude. A still more convenient form, which
dispenses with finding an approximate value of 7, is obtained
as follows: Put

T =T x
then we have =4t

5
16(1 — 2)cos &

in which S = the moon’s semidiameter. A — the increase of the moon’s right ascen-
sion in one sidereal second, and § — the moon’s declination, which are to be taken
for the Greenwich time of the observation, approximately known from the local time
and the approximate longitude.

Or we may apply to the sidereal time (= ¢,) of the transit of the limb the quantity

S
16 cos d

and the resulting a, = 9, == c S sec 4 will be the right ascension of the moon’s
centre at the local sidereal time ¥, We then find the Greenwich time O, corre-
sponding to a, as in the text, and we have

L=6,—9
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60 (o, — “o)( r da )—1
7200 Aa

— g ——

=2 (412)

we have, very nearly,
r=2x"+z" (413)

As a practical rule for the computer, we may observe that z/
will be a positive quantity when aa is decreasing, and negative
when aa is increasing.

The method of this article will be found particularly conve-
nient when the observation is compared directly with the
Ephemeris, the latter being corrected by the following process.
See page 362.

235. Peirce’s method of correcting the Ephemeris.*—The accuracy
of the longitude found by a moon culmination depends upon
that of the observed difference of right ascension. When this
difterence is obtained from two corresponding observations, if
the probable errors of the observed right ascensions at the two
meridians are ¢, and ¢, the probable error of the difference will
be = /(¢ + &). [Appendix]. But if instead of an actual ob-
servation at L, we had a perfect Ephemeris, or ¢=0, the
probable error of the observed difference would be reduced to ¢;
and if we have an Ephemeris the probable error of which is less
than that of an observation, the error of the observed difterence
is reduced. At the same time, we shall gain the additional
advantage that every observation taken at the meridian whose
longitude is required will become available, even when no corre-
sponding observation has been taken on the same day; and

* Report of the Superintendent of the U.8. Coast Survey for 1854, Appendis,
p- 115%.
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experience has shown that, when we depend on corresponding
observations alone, about one-third of the observations are
lost.”

The defects of the lunar theory, according to PEIRCE, are
involved in several terms which for each lunation may be
principally combined into two, of which one is constant and the
other has a period of about half a lunation, and he finds that
for all practical purposes we may put the correction of the
Ephemeris for each semi-lunation under the form

X=A4Bt40p (414)

in which 4, B, and C are constants to be determined from the
observations made at the principal observatories during the
semi-lunation, and ¢ denotes the time reckoned from any assumed
epoch, which it will be convenient to take near the mean of the
observations. The value of ¢ is expressed in days; and small
fractions of a day may be neglected. Let '

a,, o, ag, &c. =the right ascension observed at any observa-
tory at tho dates ¢,,¢,,t,, &c., from tho assumed
epoch,

a/,a,,a;,&c. = the right ascension at the same instant found
from the Ephemeris,

and put
n

= a

’ — — ’ —_— — ’
—a, n,=a, ag,y n;,— a, u,,&c.

1 1

then n,, n,, n,, &c. are the corrections which (according to the
observations) the Ephemeris requires on the given dates, and
hence we have the equations of condition

A+ Bt,+ CtP—n =0

A4 Bt,+ Ct}—n,=0

A4 Bt, 4+ Ctr—n,—=0
&c.

In order to eliminate constant errors peculiar to any observa-
tory, when the observation is not made at Greenwich, the ob-
served right ascension is to be increased by the average excess
for the year (determined by simultancous observations) of the
right ascensions of the moon’s limb made at Greenwich above
those made at the actual place of observation.
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If now we put

m = the number of observations — the number of equations
of condition,

T = the algebraic sum of the values of ¢,

T, = the sum of the squares of ¢,

T, = the algebraic sum of the third powers of ¢,

T,= the sum of tho fourth powers of ¢,

N = the algebraic sum of the values of n,

N, = the algebraic sum of the products of n multiplied by ¢,

N,= the algebraic sum of the products of » multiplied by &,

the normal equations, according to the method of least squares,
will be

TA + T,B 4+ T, — N,=0

mA+ TB 4+ T, —N =0
}(415)
T,A+ T,B + T, — N,= 0

The solution of these equations by the method of successive
substitution, according to the forms given in the Appendix, may
be expressed as follows :

T =1, T ™~
Bl Ii—;? . N"=N;_ 4
m
, TT
T' =T — 1—-‘—"’ T'N!
L= pe g TN
s
0y
T" — T'—( 3
4 4 T”
o— N." B MI_ Ts'C A= N — T,C—TB (416)
T, T m

Then, to find the mean error of the corrected Ephemeris, we
observe that this error is simply that of the function X, which is
to be found by the method of the Appendix, according to which
we first find the coefficients ,, k,, &, by the following formule:

mko =1
mk,+ T, k=t
mk,+ Ty k,+ T) ky=10
and then, putting
M= l/(ko’ m + kz’ Tn' + k! Tcn)
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we have
(eX)= Me (417)

in which e denotes the mean error of a single observation and
(eX) the mean error of the corrected Ephemeris ; or, if ¢ denotes
the probable error of an observation, (eX') denotes the probable
error of the corrected Ephemeris. (Appendix.)

If the values of k,, k,, and 4, are substituted in M, we shall have

ye \/[11" +(t;’1)' +(t;”l) t 1 )] (418)

] 4

It will generally happen, where a sufficient number of observa-

tions are combined, tha T'

neglected without sensibly aﬁectmg the estimation of a probable
error, and we may then take

oy, =1y, (e—1y
=[5+ o toa ] G
According to PEIRCE, the probable error of a standard observa-
tion of the moon’s transit is 0'.104 (found from the discussion of
alarge number of Greenwich, Cambridge, Edinburgh, and Wash-
ington observations); so that the probable error of the corrected
Ephemeris will be equal to M. (0-.104).

ExaMpLE.—At the Washington Observatory, the following
right ascensions of the moon were obtained from the transits over
twenty-five threads, observed with the electro-chronograph:

R. A. of
Approx. Green. Mean Time. Y II Limb.

8id. time semid. |[R. A. of ) centre
passing merid. =a,

1859, Aug. 16, 19* 0* 8= 5340 62:.06 0* 7= 51-.34
« 17, 20 0 54 33.57 63 .54 0 53 30.03
« 18, 21 1 42 48.53 65 .77 1 41 42.76

The sidereal time of the semidiameter passing the meridian is
here taken from the British Almanac, as we propose to reduce the
observations by means of the Greenwich observations which are
reduced by this almanac. We thus avoid any error in the semi-
diameter.

During the semi-lunation from Aug. 13 to Aug. 27, the
Greenwich observations, also made with the electro-chronograph,
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gave the following corrections (= n) of the Nautical Almanac
right ascensions of the moon :

Approx. Greenwich Mean Time. n t
1859. Aug. 14, 13* — 0239 — 3.

“« 15, 14 —0.26 —19

“« 16, 14 —0.49 — 09

« 18,16 — 0.63 + 12

« 19, 17 —1.04 22

« 20, 17 —1.08 + 3.2

Let us employ these observations to determine by Peirce’s
method the most probable correction of the Ephemeris on the
dates of the Washington observations. Adopting as the epoch
Aug. 17th 12* or 174.5, the values of ¢ are approximately as above
given. The correction of the Ephemeris being sensibly constant
for at least one hour, these values are sufficiently exact. We
find then

T—=08|T, = 29.94|T, = 10.556|T, = 225.045
T)—= 2983|T/= 6564|T'= 75644 T = 74200

m=6 |N =—389 N, = — 441N, = —21-85
N/=—88|N/=— 24 |N/'=—158

and hence, by (416),
C — — 0-.02135 B = — 0.1257 A= — 052

The correction of the Ephemeris for any given date ¢, reckoning
from Aug. 17.5, is, therefore,

X = —0.525 — 0°.1257¢t — 0°.02135¢*

Consequently, for the dates of the Washington observations,
the” correction and the probable error (MMc) of the correction,
found by (418) or (418*), arc as follows:

Aug. 16, 19* t=—07 X =—045 Me = 04.05
17, 20 t=+4 03 X =—0.56 Me = 0.04
18, 21 t=+4 14 X=—0.74 Me = 0.04

The longitude of the Washington Observatory may now be
found by the hourly Ephemeris (after applying these correc-
tions), by the method of Art. 234. Taking the observation of
Aug. 16, we have
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Aug. 16, T, = 19*, R. A. of Ephemeris = 0* 6™ 47°.56

X=_—045
Aa = 18122 da = + 0.0028 o, =0 6 47.11
o, =0 7 51.34
e,—a,= 1 4.23
log (a, — a,) 1.80774 log x* 6.6554
ar. co. log aa  9.74179 log da 7.3617
log 60 1.77815 ar. co. log as 9.7418
log 2 8.32768 log 555 61427
= 85" 26°.57 log x” n9.9016
=— 0280
x =385 25.77

Hence, Greenwich mean timo = Tj, 4 x = 19* 85~ 25°.77

Sidereal time mean noon = 9 87 24.18
Correction for 19* 35= 25°.77 = 3 13.09
Greenwich sidereal time = 516 3.04
Local sidereal time = q, = 0 7 51.34

Longitude = 5 8 11.70

368

The observations of the 17th and 18th being reduced in the

same manner, the three results are

Probable error. * Weight.

Aug. 18, 5*8=1170 3.5 1.
« 17, 12.50 8.1 13
« 18, 11.10 2.9 15
Mecan by weights =5 8 11.74 1.8

236. Combination of moon culminations by weights.—When some
of the transits either of the moon or of the comparison stars are
incomplete, one or more of the threads being lost, such observa-
tions should evidently have less weight than complete ones, if
we wish to combine them strictly according to the theory of
probabilities. Besides, other things being equal, a determina-
tion of the longitude will have more or less weight according to
the greater or less rapidity of the moon’s motion in right ascen-

sion.

* For the computation of the probable error and weight, see the following article.
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If the weight of a transit either of the moon or a star were
simply proportional to the number of observed threads, as has
been assumed by those who have heretofore treated of this sub-
ject,* the methods which they have given, and which are obvious
applications of the method of least squares, would be quite suffi-
cient. But the subject, strictly considered, is by no means so
simple. -

Let us first consider the formula

o, =a 4+ 9, — ¢
or, rather ’
o, =19 + (“I_',’)

in which &, and ¢ are the observed sidereal times of the transit
of the moon and star, respectively; a’ is the tabular right ascen-
sion of the star, and a, is the deduced right ascension of the
moon. The probable error of @, is composed of the probable
errors of &, and of a’ — &, which belong respectively to the
moon and the star. 'We may here disregard the clock errors, as
well as the unknown instrumental errors, since they affect &,
and & in the same manner, very nearly, and are sensibly elimi-
nated in the difference 4, — &#’. The probable error of the
quantity @’ — ¢ is composed of the errors of @’ and ¢’. The
probable error of the tabular right ascension of the moon-culmi-
nating stars is not only very small, but in the case of correspond-
ing observations is wholly eliminated; and even when we use
a corrected Ephemeris it will have but little effect, since the ob-
served right ascension of the moon at the principal observatories
always depends (or at least should depend) chiefly upon these
stars. We may, therefore, consider the error of a’ — ¢’ as sim-
ply the error of ¢/. We have here to deal with those errors only
which do not necessarily affect &’ and &, in the same manner,
and of these the chief and only ones that need be considered
here are—1st, the culmination error produced by the peculiar con-
ditions of the atmosphere at the time of the star’s transit, which
are constant, or nearly so, during the transit, but are different
for different stars and on different days; and, 2d, the accidental
error of observation. It is only the latter which can be diminished

* N1coral, in the Astronomische Nachrichten, No. 26; and S. C. WALKER, Transac-
tions of the American Philosophical Society, Vol. VI. p. 268.
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by increasing the number of threads. In Vol. II. (Transit In-
strument) I shall show that the probable error of a single deter-
mination of the right ascension of an equatorial star (and this
may embrace the moon-culminating stars) at the Greenwich
Observatory is 0°.06, whereas, if the culmination error did not
exist it would be only (.03, the probable error of a single
thread being = 0-.08, and the number of threads = 7. lence,
putting
¢ = the probable culmination error for a star,

we deduce* .
¢ = V/(0.06)*—(0.03)* = 0+.052
If, then, we put

¢ = the probablo accidental orror of the transit of a star over

a single thread,
n = the number of threads on which the star is observed,

the probable error of ¢, and, consequently, also of a’—- &, is

and the weight of a’— ¢’ for each star may be found by the

formula
Et

‘1
4 —
+n

p:

in which E is the probable error of an observation of the weight
unity, which is, of course, arbitrary. If we make p =1 when
n="T, we have E = (.06. Substituting this value, and also
¢=0.052, ¢ = (.08, the formula may be reduced to the fol-
lowing :

134

238

= (419)
100 4 ——

4

The value of @, is to be deduced by adding to &, the mean

* The value of ¢ thus found involves other errors besides the culmination error
proper, such as unknown irregularities of the clock and transit instrument, &e.
These cannot readily be separated from c, nor is it necessary for our present purpose.
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and the probable error of the deduced longitude will be

=hyatea (423)

where, H being the increase of the moon’s right ascension in 1*

of longitude, we have
p — 3600 (424
=3 24)
But if the observation at the meridian L, is compared with a
corrected Ephemeris (Art. 235) the probable error of which is

M (0°.104), the probable error of the deduced longitude will be
= h /& + M*(0.104) (425)

Finally, all the different values of the longitude will be com-
bined by giving them weights reciprocally proportional to the
squares of their probable errors.

The preponderating influence of the constant error represented
by the first term of (422) is such that a very precise evaluation
of the other terms is quite unimportant. It is also evident that
we shall add very little to the accuracy of an observation by
increasing the number of threads of the reticule beyond five or
seven. For example, suppose, as in the Washington observations
used in Art. 235, that twenty-five threads are taken, and that
four stars are compared with the moon; we have for each star,
by (419)

b 1o
100 4 22
and hence
(= \/ [(0.091)- 4+ @ 104)’ + (2 gg) — 0097

whereas for seven threads we have ¢ = 0104, and therefore
the increcase of the number of threads has not diminished the
probable error by so much as 0-.01.

For the observations of 1859 August 16, 17, 18, Art. 235, the
values of % are respectively

32.1 30.8 and 28.8
and, taking Me = M (0°.104) as given in that article, namely,
0+.05 0:.04 and 0°.04
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with the value of ¢ = 0n.097 above found, we deduce the proba-
ble errors of the three values of the longitude, by (425),

3.5 3.1 and 2.9

The reciprocals of the squares of these errors are very nearly in
the proportion of the numbers 1, 1.8, 1.5, which were used as
the weights in combining the three values.

237. The advantage of employing a corrected Ephemeris
instead of corresponding observations can now be determined
by the above equations. If the observations are all standard
observations (represented by n,= T and [p] = 4), we shall have
€, = ;= 0°.104, and the probable error of the longitude will be

by corresponding observations = ke, /2
by the corrected Ephemeris = ke, /1  M?

The latter will, therefore, be preferable when M < 1, which will
always be the case except when very few observations have been
taken at the principal observatories.

But experience has shown that when we depend wholly on
corresponding observations we lose about one-third of the
observations, and, consequently, the probable error of the final
longitude from a series of observations is greater than it would
be were all available in the ratio of y/3:3/2. Hence the proba-
ble errors of the final results obtained by corresponding observa-
tions exclusively, and by employing the corrected Ephemeris by
which all the observations are rendered available, are in the

ratio 18 : /1 + A% and, the average value of M being about
0.6, this is as 1: 0.67.

If, however, on the date of any given observation at the meri-
dian to be determined, we can find corresponding observations
at lwo principal observatories, the probable error of the longitude
found by comparing their mean with the given observation will

be only ke, 1/1.5, which is so little greater than the average error
in the use of the corrected Ephemeris, that it will hardly be
worth while to incur the labor attending the latter. If there
should be three corresponding observations, the error will be
reduced to he,3/1.83, and, therefore, less than the average error
of the corrected Ephemeris.
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vivifying influence will prevent science from stagnating into
mere mechanical drudgery.

“In approaching the ultimate limit of accuracy, the probable
error ceases to diminish proportionably to the increase of the
number of observations, so that the accuracy of the mean of
several determinations does not surpass that of the single deter-
minations as much as it should do in conformity with the law of
least squares: thus it appears that the probable error of the
mean of the determinations of the longitude of the Harvard
Observatory, deduced from the moon-culminating observations
of 1845, 1846, and 1847, is 1°.28 instead of being 1°.00, to which
it should have been reduced conformably to the accuracy of the
separate determinations of those years.

“One of the fundamental principles of the doctrine of proba-
bilities is, that the probability of an hypothesis is proportionate
to its agreement with observation. But any supposed computed
lunar epoch may be changed by several hundredths of a second
without perceptibly affecting the comparison with observation,
provided the comparison is restricted within its legitimate limits
of tenths of a second. Observation, therefore, gives no informa-
tion which is opposed to such a change.”

The ultimate limit of accuracy in the determination of a
longitude by moon culminations, according to the same distin-
guished authority, is not less than one second of time. This limit
can probably be reached by the observations of two or three
years, if all the possible ones are taken; and a longer continuance
of them would be a waste of time and labor.

From these considerations it follows that the method of moon
culminations, when the transits of the limb are employed, cannot
come into competition with the methods by chronometers and
occultations where the latter are practicable.*

* In consequence of the uncertainty attending the observation of the transit of
the moon’s limb, it has been proposed by MAEDLER (Astron. Nach. No. 887) to sab-
stitute the transit of a well-defined lunar spot. The only attempt to carry out this
suggestion, I think, is that of the U.S. Coast Survey, a report upon which by Mr.
Perers will be found in the Report of the Superintendent for 1856, p.198. The
varying character of a spot as seen in telescopes of different powers presents, it
seems to me, a very formidable obstacle to the successful application of this
method.
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FIPTH METHOD.—BY AZIMUTHS OF THE MOON, OR TRANSITS OF THE
MOON AND A STAR OVER THE SAME VERTICAL CIRCLE.

239. The travelling observer, pressed for time, will not unfre-
quently find it expedient to mount his transit instrument in the
vertical circle of a circumpolar star, without waiting for the meri-
dian passage of such a star. The methods of determining the
local time and the instrumental constants in this case are given
in Vol. II. He may then also observe the transit of the moon
and a neighboring star, and hence deduce the right ascension of
the moon, which may be used for determining his longitude
precisely as the culminations are used in Art. 234.

240. But if the local time is previously determined, we may
dispense with all observations except those of the moon and the
neighboring star, and then we can repeat the observation several
times on the same night by setting the instrument successively
in different azimuths on each side of the meridian. It will not
be advisable to extend the observations to azimuths of more than
15° on either side.

The altitude and azimuth instrument is peculiarly adapted for
such observations, as its horizontal circle enables us to set it at
any assumed azimuth when the direction of the meridian is
approximately known. The zenith telescope will also answer
the same purpose. But as the horizontal circle reading is not
required further than for setting the instrument, it is not indis-
pensable, and therefore the ordinary portable transit instrument
may be employed, though it will not be so easy to identify the
comparison star.

The comparison star should be one of the well-determined
moon-culminating stars, as nearly as possible in the same
parallel with the moon, and not far distant in right asgension,
either preceding or following.

The chronometer correction and rate must be determined, with
all possible precision, by observations either before or after the
moon observations, or both. An approximate value of the cor-
rection should be known before commencing the observations,
as- it will be expedient to compute the hour angles and zenith
distances of the two objects for the several azimuths at which it
is proposed to observe, in order to point the instrument properly
and thus avoid observing the wrong star.
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‘We shall make use of the following notation :

T, T' = the mean of the chronometer times of transit of
the moon’s limb and the star, respectively, over
the several threads,*

AT, a T’ = the corresponding chronometer corrections,
b, b’ = the inclinations of the horizontal axis at tho times

T and T,
¢ = the collimation constant for the mean of the

threads,

a, o’ = the moon’s and the star’s right ascensions,

8,8 = “ “ “  declinations,

t, ! = “ « “  hour angles,

L = & “ “  true zenith distances,

g = “ “ “  parallactic angles,

A, A = “« “« “  azimuths,

Aa = the increase of the moon’s right ascension in one
minute of mean time,
ad = the increase (positive towards the north) of the
moon’s declination in one minute of mean time,
= = the moon’s equatorial horizontal parallax,
S = the moon’s geocentric semidiameter,
¢ = the observer’s latitude,
L'= the assumed longitude,
AL = the required correction of this longitude,
L = the true longitude =1’ 4 A L.

The moon’s a, d, 7, and S are to be taken from the Ephemeris
for the Greenwich time 7'+ aT + L’(expressed in mean time).
The changes aa, ad are also to be reduced to this time. The
right ascension and declination must be accurately interpolated,
from the hourly Ephemeris, with second differences.

The quantities 4, £, g are now to be computed for the chkro-
nometer time 7, and 4/, ¢, ¢’ for the time 7. Since 4 and 4’

# The chronometer time of passage over the mean of the threads will be obtained
rigorously by reducing each thread separately to the mean of all by the general
formula given for the purpose in Vol. II. If, however, the same threads are
employed for both moon and star, and ¢ denotes the equatorial distance of the mean
of the actually observed threads from the collimation axis, it will suffice (unless the
observations are extended greatly beyond the limits recommended in the text) to
take the means of the observed times at the times of passage over the fictitious
thread the collimation of which is8 —¢. The slight theoretical error which this
procedure involves will be eliminated if the observations are arranged symmetrically
with respect to the meridian.
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are required with all possible precision, logarithms of at least six
decimal places are to be employed in their computation; but for
$ e, ¢, ¢, four decimal places will suftice. The following formule
for this purpose result from a combination of (16) and (20):

For the moon. For the star.

t=T+4+aT—a V=T4aT —d

tan M —tan dsect with si tan M’ = tan &' sec t’
tan t cos M 1th 81X ,  tan t'cos M’
tan 4 = sin (¢ — M)} decimals; {tan 4= sin (¢ — M)

(426)

tan NV — cot ¢ cos ¢ tan N’ = cot ¢ cos ¢
tan g = tan t gin V with four |tan ¢ = tan ¢’ sin N’
cos (8 + N) decimals : cos(é'+ N')
cot (8 4+ N) ) ,  cot(s'+ N')
tan = ———= tan {! = ————

cos ¢q cos f

in which 4 and ¢ are to be so taken that sin A and sin ¢ shall
have the same sign as sin .

The true azimuth of the moon’s limb will be found by applying
to the azimuth of the centre the correction

+ 8 [upper sign for 1st limb]
" ein {Llower « « 2d «

If we assume the parallax of the limb to be the same as that of
the centre (which involves but an insensible error in this case)
we next find the apparent azimuth of the limb by applying the
correction given by (116), or

pr(¢ — ¢')8in 1” 8in A’ cosec ¢

in which ¢ — ¢’ is the reduction of the latitude, and p is the
terrestrial radius for the latitude ¢. In this expression e
employ 4, which is the computed azimuth of the star, for the
apparent azimuth of the moon’s limb, since by the nature of the
observation they are very nearly equal.

To correct strictly for the collimation and level of the instr-
ment, we must have the moon's and star’s apparent zenith di¢
tances, which will be found with more than suflicient accuracy
for the purpose by the formulee

moon’s app. zen. dist. = {,={ + = sin I — refraction
star's « o« « —{'={'— refraction
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and then the reduction of the true azimuth to the instrumental
azimuth (see Vol. IL., Altitude and Azimuth Instrument) is

¢ b
for the moon, = ¥
* 7 in <Y + tan §,

c b
for the star, F —— -
8in §; tan {;

the upper or lower sign being used according as the vertical
circle is on the left or the right of the observer. The computed
instrumental azimuths are, therefore,

S  pr(p—¢')sinl"sind'_ ¢ _ b

A=A +——
(moon) 4, sin C+ sin ¢ ™ sin C,+ tan {,
#27)
c _ Vv

A I=AI— —
(star) 4, * X +ian X
If now the longitude and other elements of the computation are
correct, we shall find 4, and 4 to be equal: otherwise, put

= A, — A/ (428)

then we are to find how the required correction a L depends on z,
supposing here that all the elements which do not involve the
longitude are correct. Now, we have taken a and ¢ from the
Ephemeris for the Greenwich sidereal time I'+ aT + L’, when
they should be taken for the time 7'+ a7 4 L’4 aL. Hence,
if 2 and 3 denote the increments of the moon’s right ascension
and declination in one sidereal second, both expressed in seconds
of arc,

— 6%‘1% — [9.39675] aa
3 (429)
B= 555 = [8:22066] as
we find that
o requires the correction 1.aL
3 ¢« “« ﬁ all
t “ “ —i.aL

and these corrections must produce the correction —zin the moon’s
azimuth. The relations between the corrections of the azimuth,
the hour angle, and the declination, where these are so small as
to be treated as differentials, is, by (51),
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YR LIS LR TP
sin { sin{
that is, )
PN UL PN ALLUL FRN )
sin{ sin {
Hence, if we put .
a— l‘cos?cosq_ .s-mq (430)
sin { sin {
we have
oL = % (431

and hence, finally, the true longitude L'+ aL.

241. In order to determine the relative advantages of this
method and that of meridian transits, let us investigate a formula
which shall exhibit the effect of every source of error. Let

da, 88, 0r, S — the corrections of the elements taken from
the Ephemeris of the moon,
da’, 86’ = the corrections of the star’s place,
8T, 8T" = the corrections for error in the obs’d time,
3a T = the correction of a7,
d¢ = the correction of ¢.

If, when the corrected values of all the elements—that of the
longitude included—are substituted in the above computation,
A, and A, become A, + d4, and A’ + dA/, we ought to find,
rigorously,

Ay + d4, = A} + dA/
which compared with (428) gives
x = —dA, + dA/ (432)

We have, therefore, to find expressions for d4, and d4, i
terms of the above corrections and of aL. We have, first, by
differentiating (427),
a4, —aa = 95 L olp—ghsin"sind’
sin{ siny
dA) = d4A'

We neglect errors in ¢ and b which are practically eliminated
by comparing the moon with a star of nearly the same declins-
tion, and combining observations in the reverse positions of the
axis.
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The total differential of A is, by (51), after reducing dt to arc,

A = Ml5dt+squa cot ¢ sin 4 dg
sin¢ n{

consequently, also,

dA’ — W 15d¢ + smq’dd, cot ¢’ sin A'de

Since t =T+ aT — a, we have
dt =dT + daT — da

where d7 and da T may be at once exchanged for 67 and daT';
but da is composed of two parts: 1st, the correction of the
Ephemeris, and 2d, A(aL + 8T + 8aT), which results from our
having taken a for the uncorrected time. Hence we have, in

are,
15dt = 1507 + 15 3aT — 158a — A(AL + 8T + 3aT)

The correction d3 is likewise composed of two parts, namely,
' ds =38 + A(aL + 8T + 3aT)
Further, we have simply d¢’ = 44’ and
at = 3T' 4+ 3o T — oo’

but, as we may neglect the error in the rate of the chronometer
for the brief interval between the observation of the moon and
the star, we can take da7” = daT, and, consequently,

At = 3T + 3aT — 3’

‘When the substitutions here indicated are made in (432), we
obtain the expression

—aaL 4+ 15F .00 — 09 55 _ —a)s
x=asl +15f.8a sin ¢ (A5f —a)eT

— 1510+ %‘i'r‘)_%.aa'.{_ 15 . 0T

3S p(¢ — ¢)sin 17 gin A’ i
gin £ sin¢

— (15 —f)—a] aT +

gin ({' — ) sin 4’ s

433
sin ¢ sin g’ (433)
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*in which the following abbreviations are used:

__co8d cosq ,__ cosd’cosq
J= sin¢ J'= sin¢’
a=1f—pod
sin{

and in the coefiicient of d¢ we have put 4 = A4’.

By the aid of this equation we can now trace the effect of
each source of error.

1st. The coeflicients of dd, ¢, =, dp have difterent signs for
observations on different sides of the meridian, and therefore
the errors of declination, parallax, and latitude will be elimi-
nated by taking the mean of a pair of observations equidistant
from the meridian.

2d. The star's declination being nearly equal to that of the
moon, we shall have very nearly f = f’, and the coeflicient of
daT will be = a; and since to find aL we have yet to divide
the equation by a, it follows that an error in the assumed clock
correction produces an equal error (but with a different sign) in
the longitude, as in the case of meridian observations.

8d. An error 87 in the observed time of the moon’s transit
produces in the longitude the error

(Ei —1)or
a

The mean of the values of a for two observations equidistant

from the meridian is Af. The mean effect of the error ¢7 is

therefore
(2 1)or
A

which is the same as in the case of a meridian observation.
The effect of an error 67" in the observed time of the star’s
transit is
15 f'

— T
a

and for two observations equidistant from the meridian, the star
being in the same parallel as the moon, the mean effect is

15 s
A

also the same as for a meridian observation.
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4th. An error 48 in the tabular semidiameter is alwayggelimi-
nated in the case of meridian observations when they are com-
pared with observations at another meridian, since the same
semidiameter is employed in reducing the observations at both
meridians. But in the case of an extra-meridian observation the
effect upon the longitude is

8 28
asin{  1cosd cosq — B sing

and in the mean of two observations equidistant from the
meridian, the values of ¢ being small, it is

58 a8
Acosd cosqg Acosd

(1 4 2 sin’ 1 ¢) nearly.

For a meridian observation the error will be

38
Acosd

The error in the case of extra-meridian observations, therefore,
remains somewhat greater than in the case of meridian ones, the
excess being nearly
248.8in'i¢q
Acos 8

which, however, is practically insignificant; for we have not to
fear that 88 can be as great as 1”, and therefore, taking ¢ = 15°,
8 = 30°, and 1 = 0.4, which are extreme values, the difference
cannot amount to (.1 in the longitude.

5th. The error da of the tabular right ascension of the moon
produces in the longitude the error

_157,,
and from the mean of two observations equidistant from the
meridian, the error is
_ 15 3a
P}
as in the case of the meridian observation.

The error da’ in the star’s right ascension produces the error
15 oo’

when the star is in the same parallel as the moon.
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From this discussion it follows that, by arranging the observa-
tions symmetrically with respect to the meridian, the mean result
will be liable to no sensible errors which do not equally aftect
meridian observations. But for the large culmination error in
the case of the moon (Art. 236), which equally affects extra-
meridian observations, the latter would have a great advantage
by diminishing the effect of accidental errors. But the probable
error of the mean of two observations equidistant from the
meridian, seven threads being employed, will be, by (422),

0= \/ [(0.091)' + (0'34)' + (0';’6)'] =010

and that of a single meridian observation, even where only one star
is compared with the moon, is, by the same formula, = 0*.11. When
we take into account the extreme simplicity of the computation,
the method of moon culminations must evidently be preferred ;
and that of extra-meridian observations will be resorted to only
in the case already referred to (Art. 239), where the traveller
may wish to determine his position in the shortest possible time
and without waiting to adjust his instrument accurately in the
meridian.

ExaMpLE.—At the U.S. Naval Academy, 1857 May 9, I ob-
served the following transits of the moon’s second limb and of
a Scorpii, at an approximate azimuth of 10° East, with an ERTEL
universal instrument of 15 inches focal length:

Chronometer. Level. Collim.
D II Limb. 7 —=16*11=80°.17 b —=4-2"2 ¢=0.0 } Vertical circle
o Scorpii T'=16 27 49.83 V=42 .2 left.

These times are the means of three threads. The chronometer
correction, found by transits of stars in the meridian, was
— 55™ 9.16 at 13" gidereal time, and its hourly rate — (.32. The
assumed latitude and longitude were

¢ = 38° 58’ 53".5 L'= 5 5= 55
The star’s place was

o’ = 16* 12= 8190 8’ = — 25° 14’ 58".5
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We first find the sidereal times of the observations of the
moon and star respectively, and the Greenwich mean time of
the observation of the moon: we have

AT = — 55~ 9.89 AT = — 55 997
T + aT = 15* 16= 20°.28 T 4 aT’'= 15* 32~ 3986
L'= 5 5 55.
Gr. sidereal time =20 22 15.28
Sid. time Gr. moon—= 8 8 58_i1

Sidereal interval = 17 13 16 .37
Red. to mean time— — 2 49.28

Gr. mean time — May 9, 17* 10~ 27-.09

Hence from the Ephemeris we find

o = 15* 54 45:.32 = — 24° 42' 54" 4
Ao = 201135 a8 = —17".619
S =14 47"2 = b¥ 9".2
By (426) we find
A= —9°40 51".2 A= — 9°57" 14".8
log sing = 2n9.1581 logsing = n9.1719
= 64195 = 64°5¢4.1
z8in{= 4 48.8
Refraction= — 2.1 Refraction= — 2.1
(= 65 6.2 /= 64 52.0
For the latitude ¢ we find, from Table IIT.,
log p = 9.9994 ¢ —¢'=1115"
and then, by (427), we find
A =—9°40 51".2 A’ = —9°57"14"8
_ 5 1eme2
sin {
N ot L ’
pz(p—y?sml sin 4 - 2 .0
sin
¢ ¢
= 0.0 — = .
8in¢{, sing/ 0.0
b b
=— 1.0 — = — 1.
tan ¢, tang/ 0

A,=—9 57 18 4 A/ =—9 5715 .8
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whence
x=—2"6

By (429), (430), and (431), we find
log 2 = 9.72175 log 8 = n9.10256 a = 0.5054

— 2.6
L=——=—5.15
0.5054

If we wish to sce the effect of all the sources of error in this
example, we find, by (433),

0.5054 AL — — 2".6 — 14.96 da — 0.16 48 + 14.45 47 — 14.82 47" — 0.836 dAT
+ 14.82 da’ 4 0.16 46’ 4+ 1.11 68 — 0.001 o= - 0.004 do

The proper combination of observations is supposed to eliminate,
or at least reduce to a minimum, all the errors except that of the
moon’s right ascension as given in the Ephemeris. In practice,
therefore, it will be necessary to retain the term involving éa.
Thus, in the present case we take only

0.5054 AL = — 2".6 — 14.96 da

A second observation on the same day at an azimuth 10°

west gave
0.5458 AL = — 5".7 — 14.92 %a

The elimination of the errors of declination requires that we
take the arithmetical mean of these equations; whence we have,

finall
¥ AL = — 789 — 2843 da

SIXTH METHOD.—BY ALTITUDES OF THE MOON.

242. The hour angle (¢) of the moon may be computed from
an observed altitude, the latitude and declination being known,
and hence with the local sidereal time of the observation (=)
the moon’s right ascension by the equation @ = @ — ¢, with
which the Greenwich time can be found, as in Art. 234, and,
consequently, also the longitude. ‘

The hour angle is most accurately found from an altitude
when the observed body is on the prime vertical, and more
accurately in low latitudes tham in high ones (Art. 149). This
method, therefore, is especially suited to low latitudes.

The method may be considered under two forms:—(A) that in
which the moon’s absolute altitude is directly observed and
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cmployed in the computation of the hour angle; and (B) that in
which the moon’s altitude is compared differentially with that of
a neighboring star,—i.c. when the moon and a star are observed
either at the same altitude, or at altitudes which differ only by a
quantity which can be measured with a micrometer.

243. (A.) By the moon’s absolute altitude.—This method being
practised only with portable instruments, it would be quite
superfluous to employ the rigorous processes of correcting for
the parallax, which require the azimuth of the moon to be given.
The process of Art. 97 will, therefore, be employed in this case
with advantage, by which the observed zenith distance is reduced
not to the centre of the earth, but to the point of the earth’s
axis which lies in the vertical line of the observer, and which
we briefly designate as the point O. Let

{” = the observed zenith distance, or complement of the
observed altitude, of the moon’s limb,
© — the local sidereal time,
L’ = the assumed longitude,
AL = the required correction of L',
L = the true longitude = L' ++ aL.

Find the Greenwich sidereal time ® 4 L/, and convert it into
mean time, for which take from the Ephemeris the quantities

3 = the moon’s declination,
7= “ eq. hor. parallax,
S= “ semidiameter.

Let S’ be the apparent semidiameter obtained by adding to 8
the augmentation computed by (251) or taken from Table XII.
Let r be the refraction for the apparent zenith distance ¢’’; and

puat
U=0"4+rx8 (434)

Let 7, be the corrected parallax for the point O, found by (127),
or by adding to = the correction of Table XIIIL. (which in the
present application will never be in error 0’’.1); and put

8, =8 4 e*x, singp cos
g, =C —msinf’ } (435)

in which log e*= 7.8244.
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Hence, denoting the longitude computed from the right ascen-
sion @ = © — t by L'/, we have

. L
T l t d =L, L=L”_ __ﬂA_—.
rue longitude +a 152 cos d tang

whence

”
al = L"— L

B secs
14 57 "e° cotg

If we denote the denominator of this expression by 1+ a, we
shall have, by (18),

£ [tane tan ¢
— — 438
151( sin ¢ tant ) (438)
and then
L"—L'
L=— " =L’ L 439
a 1+a L +a (439)

ExamprLe.—At the U.S. Naval Academy, in latitude ¢ — 38°
68’ 53" and assumed longitude L’= 5* 6™ (", I observed the
double altitude of the moon’s upper limb with a sextant and
artificial horizon as below:

1849 May 2.—Moon east of the meridian.

Chronometer 108 14= 2106 Mean of 60be. 2 = 640 40’ 0"
Fast 44 00 Index corr. of sextant = — 14 57
Local mean time= 6 33 21.6 2)64 25 3

Assumed L' = 5 6 0.
Approx.Gr. time = 10 39 21.6

App.alt. T= 82 1231 5
"= T T B/ S

Barom. 80 45

(For which time we take =, S and Att. Th }
erm. €3° F. r= + 1309
8 from the Nautical Almanac) Ext. « 60 .
8S=15'16"4
8 =+ 39474776 8= 15 24 5
Amsingcosd =  +14.1 AS(Tab. XIL)= +8 1 itk
’=l
=+ 3 48 1.7 =568 371 ¢ 88 49
Ax (Tab. XIIL)= + 4 .l}r,dn $'= 47 88 1
=200 7.5

= 67 1645 8
With these values of 8,, {;, and ¢ = 38° 58’ 53'/, we find, by (436),
t=— — 3*19= 53:.64

The sidereal time at Greenwich mean noon, 1849 May 2, was
2" 41 7.98; whence
O = 8 16~ 14:.61
a=11 36 8.2
Vor. I.—25
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Corresponding to this right ascension we find by the hourly
Ephemeris the Greenwich mean time, and hence the longitude
L, as follows:

Greenwich mean time — 10 89= 487

Local « « — 588 216
L"'=5 6 27.1
L"— L' = 4 211

By the hourly Ephemeris we also have for the Greenwich time

10* 39~ 48-.7,
» Increase of a in 1 = 1 = 4 24014

« din 1~ =g = 4 10".01
and hence, by (438) and (439),

a = — 0.3317 aL = + 4006
L=L"4+ aL = 5* 6~ 406

244. The result thus obtained involves the errors of the
tabular right ascension and declination and the instrumental
error. The tabular errors are removed by means of observations
of the same data made at some of the principal observatories, as
in the case of moon culminations. The instrumental error will
be nearly eliminated by determining the local time from a star
at the same altitude and as nearly as possible the same declina-
tion; for the instrumental error will then produce the same
error in both © and ¢, and, therefore, will be eliminated from
their difference © —¢=a. The error in the longitude will
then be no greater than the error in ©. But to give complete
effect to this mode of eliminating the error, an instrument, such
as the zenith telescope, should be employed, which is capable of
indicating the same altitude with great certainty and does not
involve the errors of graduation of divided circles. A very
different method of observation and computation must then be
resorted to, which I proceed to consider.

245. (B.) By equal dltitudes of the moon and a star, observed with
the zenith telescope.—The reticule of this instrument should for
these observations be provided with a system of fixed horizontal
threads: nevertheless, we may dispense with them, and employ
only the single movable micrometer thread, by setting it suc-
cessively at convenient intervals.
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Having selected a well determined star as nearly as possible
in the moon’s path and differing but little in right ascension, a
preliminary computation of the approximate time when each
body will arrive at some assumed altitude (not less than 10°)
must be made, as well as of their approximate azimuths, in
order to point the instrument properly. The instrument being
pointed for the first object, the level is clamped so that the
bubble plays near the middle of the tube, and is then not to be
moved between the observation of the moon and the star. After
the object enters the field, and before it reaches the first thread,
it may be necessary to move the instrument in azimuth in order
that the transits over the horizontal threads may all be observed
without moving the instrument during these transits. The times
by chronometer of the several transits are then noted, and the
level is read off. The instrument is then set upon the azimuth
of the second object, the observation of which is made in the
same manner, and then the level is again read off. This com-
pletes one observation. The instrument may then be set for
another assumed altitude, and a second observation may be taken
in the same manner.* Each observation is then to be separately
reduced as follows: Let

i, ¢, 1", &c. = the distances in arc of the several threads
from their mean,

m, m’ — the mean of the values of 7 for the observed
threads, in the case of the moon and star
respectively,

I, I’ = the lovel readings, in arc, for the moon and
star,

©, ©'—= the mean of the sidereal times of the observed
transits of the moon and star;

then the excess of the observed zenith distance of the moon's
limb at the time © above that of the star at the time O’ ist

m—m 11

the quantities m and ! being supposed to increase with increasing
zenith distance.

% The same method of observation may be followed with the ordinary universal
instrument, but, as the level is generally much smaller than that of the zenith tele-
scope, the same degree of accuracy will not be possible.

+ When the micrometer is set successively upon assumed readings, m and m’ will
be the means of these readings, converted into arc, with the known value of the screw.
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Also, let

e, 8,t ¢, A, g =the R. A, decl,, hour angle, geocentric
zenith distance, azimuth, and parallactic
angle of the moon’s centre at the time
o;

o, 8, t, ¢’ A, ¢ = the same for the star at the time ©;
x, S = the moon’s equatorial hor. parallax and

semidiameter;
A = the increase of o in 1* of sid. time;
B = “« 3 “« «“ «“

¢ = the latitude;
L' = the assumed longitude;
AL = the required correction of L’;

The quantities a, d, 7, and S are to be taken from the Ephemeris
for the Greenwich sidereal time © 4 L’ (converted into mean -
time); @ and ¢ being interpolated with second differences by the
hourly Ephemeris. Then the required correction of the longi-
tude will be found by comparing the computed value of ¢ with
the observed value. For this purpose we first compute ¢ and {’
with the greatest precision. and also 4 and ¢ approximately. If
the differential formula of the next article is also to be computed;
A’ and ¢’ will also be required. The most convenient formule
will be— :

For the moon. For the star.
t=90 —a =0 —ad
tan M—=tan 3 sect with six tan M’'—tan &’ sec t’
sindcos (¢ —M) . . sind’cos (¢ —M')
cos {= —n il decimals; )} cosl'= Ty
(H0)
cos A=tan(¢—M)cot? cos A'=tan (¢ —M")cot{’
tan N=cot ¢ cos ¢ with four | tan N'=cot ¢ cos?
tant sin N decimals tan? sin N’
tang = — | tang=—--—_—
7 cos (3 + N) 7 cos (8'+ N')

The zenith distance ¢ thus computed will not strictly correspond
to the time © unless the assumed longitude is correct. Let its
true value be ¢ + d¢. Also put

¢, = the observed zenith distance of the moon’s limb,
¢, = the observed zenith distance of the star,
r.r’ = the refraction for £, and %/,
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then
C|’= C'—I"
L=¢4+m—m +1 -0
Putting then :
=L+ r=04+m—w4 1=V (r—7r)
and, by Art. (186
d, by Art. (136), i
r=(r—¢)cosd sinp=psinxsin({"—p) :
k=px+ SF t(p= S)sinpsin §

the { ;1 pper } sign being used for the moon’s { upper} limb, we
ower . lower

have
¢ —(C+d7) =k

This equation determines dZ. We have, therefore, only to
determine the relation between dZ and aL. Now, we have taken
a and é for the Greenwich sidereal time © + L’, when we should
have taken them for the time ® + L’ + aL’: hence

o requires the correction 1AL
6 [{3 [ ﬂAL
t “ “ —Aal

and then, by (51),
d: = —cosg.faL —singcosd.154aL

Hence, putting z = — dZ, or

r=F—C0"+k
and a=154singcos 8 4 fcosq (442)
we have AL=%  L=L'+4aL

The solution of the problem, upon the supposition that all the
data are correct, is completely expressed by the equations (440),
(441), and (442).

246. The quantity z is in fact produced not only by the error
in the assumed longitude, but also by the errors of observation
and of the Ephemeris. In order to obtain a general expression
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in which the effect of every source of error may be represented,
let
T, T' = the chronometer times of observation of the
moon and star,
AT = the assumed chronometer correction,
8T, 3T'= the corrections of 7T and T" for errors of
observation,
3a T = the correction of AT,
da, 83, 0r, S = the corrections of the elements taken from
the Ephemeris,
3¢ = the correction of the assumed latitude.

If, when the corrected values of all the elements are substituted,
& 'y k become ¢ + dg, ¢’ + dg’, k + dk, instead of the equation
¢ — (L + d¢) = k we shall have

¢+ dt — (& + df) =k + dk
* = —di + d'—dk (443)

and hence

and we have now to find expressions for dZ, d7’, and dk in terms
of the above corrections of the elements.
Taking all the quantities as variables, we have

d? = 158ingq cos 8 dt — cosq d3 4 cos A d¢
d;'=158in ¢ cos 8’ dt’— cos ¢’ d3' 4 cos A’ dg

Since t =T+ aT — a, we have
dt =dT + daT — da

where d7 and daT may be exchanged for 7" and da T, but da is
composed of two parts: 1st, of the actual correction of the
Ephemeris; and 2d, of 2(aL + 8T + 3aT) resulting from our
having taken a for the uncorrected time : hence we have

dt =dT + 6AT — da — A(aL + ¢T + 8aT)
The correction dé is also composed of two parts, so that
dd =38 + p(aL + 3T + 3aT)
Further, we have simply dé’ = 8¢’, and
dt = 8T 4 3aT — 8’

in which a7 at the time 7" is assumed to be the same as at the
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time 7, an error in the rate of chronometer being insensible in
the brief interval between the observations of the moon and the
star.

Again, we have, from (441),

cos pdp = p cos x 8in (£” — y) d= + p sin x co8 ({" — y) dI”
dk = dp 5+ dS\

or, with sufficient accuracy,
dk = 8in {’ 8= 5= 8S + sin 7 cos ¢’ dZ’

Now, substituting in dZ and dZ7’ the values of d!, dd, &c., and then
substituting the values ot d and dZ’ thus found, in (443), together
with the value of dk, we obtain the final equation desired, which
may be written as follows:*

r=aAL+tf.% 4 cos8q.88 —(f —a) T
—mf’. 80’ — m cos ¢’ 3’ + mf’ . 3T"
+3S—sinf'dx—(f—mf' —a)daT
— (cos A —mcos A") dp

(#4)

where the following abbreviations are employed :

S =158inq cos J'=158in ¢’ cos &’
a=Af + Bcosq m=1 — sin = cos %’

Having computed the equation in this form, every term is to
be divided by a, and then a L will be obtained in terms of z and
all the corrections of the elements.

A discussion of this equation, quite similar to that of (438),
will readily show that the observations will give the best result
when taken near the prime vertical and in low latitudes, and,
farther, that the combination of observations equidistant from
the meridian, east and west, eliminates almost wholly errors of
declination and parallax and of the chronometer correction.

ExampLE.t—At Batavia, on the 11th of October, 1853, Mr.
De LaxNGE, among other observations of the same kind, noted
the following times by a sidereal chronometer, when the moon’s

* The formula (444) is essentially the same as that given by OupeMaNs, Astronom.
Journal, Vol. IV. p. 164. The method itself is the suggestion of Professor Karszr
of the Netherlands.

+ Astronomical Journal, Vol. IV, p. 165.
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lower limb and 86 Capricorni passed the same fixed horizontal
threads:

T = 0 38~ 8.62 T' = 0 49= 5377
The difference of the zenith distances indicated by the level
was
-1 =420
The chronometer correction was a7 = + 1™ 882, and the rate
in the interval 77 — T was insensible.

The assumed latitude was ¢ — — 6° 9’ 57".0
“ longitude ¢ L'=—T7* 7370

‘We have
© =0*39~11-94 ©' = 02 50~ 57°.09

For the Greenwich sid. time © + L’=1T* 31™ 34'.94,or mean
time 4* 10» 57°.00, we find, from the Nautical Almanac,

a= 21*12= 545 A = 4 00387
3= —20° 55 8".9 8=+ 0".1440
r= b7 51”4 o= 21* 20" 22:.45
S= 15 478 &' = — 22° 26’ 30”5

The computation by (440) gives

{ =52°11"'49".44 ¢'= 53° 18’ 57".30
A =068°14'4 A'— 66° 30'.6
q—=81°18'.9 ¢ = 80° 85'.2
From Table III. we find
o — ¢ =—2 21 log p — 9.999983

Since the same fixed threads were used for both moon and star,
we have m = m/, and hence also sensibly r = #’; therefore, by
(441), we find

¢” = 53° 13’ 59”.30 y=—>54"5 p=46'21".25
{—0"=— 62 9".86 k=4 62'9".17
Hence, by (442),
x = — 0".69 a =+ 05575 AL = —1:.24

The longitude by this observation, if the Ephemeris is correct,

is therefore
L=L"+4 aL=—"7"7"38.24
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If we compute all the terms of (444), we shall find

AL =——1.24—248400—0.27 3 +23.84 3T — 24.240T'—0.443a T
42428804 0.29 30"+ 17938 + 144dr —0.043¢

This shows clearly the effect of each source of error; but in prac-
tice it will usually be sufficient to compute only the coefficients
of da and 4. In the present example, therefore, we should take

AL = — 1.24 — 24.84 da — 0.27 33

which will finally be fully determined when da and 44 have been
found from nearly corresponding observations at Greenwich or
elsewhere.

SEVENTH METHOD.—BY LUNAR DISTANCES.

247. The distance of the moon from a star may be employed
in the same manner as the right ascension was employed in
Arts. 229, &c., to determine the Greenwich time, and hence the
longitude. If the star lies directly in the moon’s path, the
change of distance will be even more rapid than the change of
right ascension; and therefore if the distance could be measured
with the same degree of accuracy as the right ascension, it would
give a more accurate determination of the Greenwich time.
The distance, however, is observed with a sextant, or other re-
flecting instrument (see Vol. II.), which being usually held in
the hand is necessarily of small dimensions and relatively infe-
rior accuracy. Nevertheless, this method is of the greatest im-
portance to the travelling astronomer, and especially to the
navigator, as the observation is not only extremely simple and
requires no preparation, but may be practised at almost any
time when the moon is visible.

The Ephemerides, therefore, give the true distance of the
centre of the moon from the sun, from the brightest planets, and
from nine bright fixed stars, selected in the path of the moon,
for every third hour of mean Greenwich time. The planets em-
ployed are Saturn, Jupiter, Mars, and Venus. The nine stars,
known as lunar-distance stars, are a Arietis, @ Tauri (Aldebaran),
B Geminorum (Pollux), a Leonis (Regulus), a Virginis (Spica),
@ Scorpii (Antares), & Aquile (Altair), o Piscis Australis (Fomal-
haut), and a Pegasi (Markab).

The distance observed is that of the moon’s bright limb from a
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by refraction if we wish to compute the true distance to the
nearest second of arc (Art. 133). These features, which add
very materially to the labor of computation, cannot be over-
looked in any complete discussion of the problem.

Simple as the problem appears when stated generally, the
strict computation of it is by no means brief; and its importance
and the frequency of its application at sea, where long computa-
tions are not in favor, have led to numerous attempts to abridge
it. In most instances the abbreviations have been made at the
expense of precision; but in the methods given below the error
in the computation will always be much less than the probable
error of the best observation with reflecting instruments: so that
these methods are entitled to be considered as practically perfect.

‘With the single exception of that proposed by BEesskL,* all the
solutions depend upon the two triangles of Fig. 29, and may be
divided into two classes, rigorous and approrimative. In the
rigorous methods the true distance is directly deduced by the
rigorous formulse of Spherical Trigonometry ; but in the approxi-
mative methods the difference between the apparent and the
true distance is deduced either by successive approximations or
from a development in series of which the smaller terms are
neglected. Practically, the latter may be quite as correct as the
former, and, indeed, with the same amount of labor, more
correct, since they require the use of less extended tables of
logarithms. I propose to give two methods, one from each of
these classes.

A.—The Rigorous Method.

248. For brevity, I shall call the body from which the moon’s
distance is observed the sun, for our formulse will be the same
for a planet, and for a fixed star they will require no other
change than making the parallax and semidiameter of the star
zero.

* Astron. Nach. Vol. X. No. 218, and Astron. Untersuchungen, Vol. II. BEsseL’'s
method requires a different form of lunar Ephemeris from that adopted in our
Nautical Almanacs. But even with the Ephemeris arranged as he proposes, the
computation is not so brief as the approximative method here given, and its supe-
rioxity in respect of precision is so slight as to give it no important practical
advantage. It is, however, the only theoretically ezact solution that has been given,
and might still come into use if the measurement of the distance could be rendered
much more precise than is now possible with instruments of reflection.
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Let us suppose that at the given local mean time 7' the obser-
vation (or, in the case of the altitudes, computation) has given

d" = the apparent distance of the limbs of the moon and
sun,
h' = the apparent altitude of the moon’s centre,
H' = the apparent altitude of the sun’s centre,

and that in order to compute the refraction accurately the
barometer and thermometer have also been observed. For the
Greenwich time corresponding to T, which will be found with
sufficient accuracy for the purpose by employing the supposed
longitude, take from the Ephemeris

8 = the moon’s semidiameter,
S = the sun’s “«
then, putting
d’= the apparent distance of the centres,
s’ = the moon’s augmented semidiameter,

= 8 } correction of Table XII.
we have
d=d"+¢+ 8§

upper signs for nearest (inner) limbs, lower signs for farthest
(outer) limbs. .

But if the altitude of either body is less than 50°, we must
take into account the elliptical figure of the disc produced by
refraction. For this purpose we must employ, instead of s’ and
S, those semidiameters which lie in the direction of the lunar
distance. Putting

qg=2ZM'S, Q=2Z8'M' (Fig. 29)
a8, oS = the contraction of the vertical semidiameters of the
moon and sun for the altitudes A’ and H',

the required inclined semidiameters will be (Art. 133)

8 — as cos?q and S — aScos?@

The angles ¢ and @ will be found from the three sides of the
triangle ZM'S’, taking for d’ its approximate value d"’ & s’ = §
(which is sufficiently exact for this purpose, as great precision in
g and @ is not required), and for the other sides 90°— A’ and
90°— H'’. If we put

m=3%0W+ H 4 d")
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we shall have

cos m sin(m — H'’) cos m sin(m — R’)

s 3 _— in? —_— 2
sin}g = sin d’ cos A’ sin® § @ = sin d’ cos A’ (45)
and then the apparent distance by the formula

d'=d" + (¢ — as cos’ g) = (S — a8 cos® Q) (446)

‘We are now to reduce the distance to the centre of the earth.
‘We shall first reduce it to that point of the earth’s axis which
lies in the vertical line of the observer. Designating this point
as the point O, Art. 97, let

d, h,, H = the distance and altitudes reduced to the point
0, -
r, R = the refraction for the altitudes 2’ and H’,
=, P = the equatorial hor. parallax of the moon and
sun.

The moon’s parallax for the point O will be found rigorously
by (127), but with even more than suflicient precision for the
present problem by adding to = the correction given by Table
XITI. Denoting this correction by ax, we have

m == 4 A% "

W=k —r4mcos('—r) H,=H — R+ Pcos(H' — R) (447)
The parallax Pis in all cases so small that its reduction to the
point O is insignificant. ‘

If, then, in Fig. 29, M and S represent the moon’s and sun’s
places reduced to the point 0, and we put

Z = the angle at the zenith, MZS,

we shall have given in the triangle M’ZS’ the three sides
d’, 90° — h’, 90° — H’, whence

cos ¥ (A + H' 4 d')cos ¥ (W + H'— d')
cos i/ cos H'

cos’ $ Z —=

and, then, in the triangle MZS we shall have given the angle Z
with the sides 90° — A, and 90° — H,, whence the side MS =d,
will be found by the formula [Sph. Trig. (17)],

sin’ } d, = cos’ § (h, + H,) — cos k, cos H, cos* $ Z
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To simplify the computation, put
m=} K+ H 4 &)
then the last formula, after substituting the value of Z, becomes,

sin’  d, = cos* } (b, + H,) — cos h cos H, cos m cos (m — d')
cos A’ cos H'

Let the auxiliary angle M be determined by the equation

cos k, cos H, cos m cos (m — d')
cos A’ cos H' cos' } (h, + H,)

sin? M —=

8)

then we have*
sin ¢ d, = cos # (h, + H,) cos M (449)

Finally, to reduce the distance from the point O to the centre
Fig. 30. of the earth, let P (Fig. 80) be the north pole of
re the heavens, M, the moon’s place as seen from the
point O, M the moon’s geocentric place, § the
x, sun’s place (which is sensibly the same for either
y Point).  The point O being in the axis of the
cclestial sphere, the points M, and M evidently lie
in the same declination circle PM, M. Hence,

8 putting

d = the geocentric distance of the moon and sun = SJM,
d = SM,

¢ = the moon’s geocentric declination = 90° — PX,

8, = the declination reduced to the point 0 = 90° — PX¥,,

4 = the sun’s declination,

we have, in the triangles PMS and M, MS,

cosd, —cos (3, —3d)cosd  sind —sindcosd

cos PMS = - = .
sin (8, — J) sin d cos dsin d

‘We may put cos (6, — d) == 1, and, therefore,

sin 8in (3, — J)

cosd, —cos d = 3
cos

(sm 4 — sin J cos d)

* This transformation of the formule is due to Borpa, Description et usage du cercle
de réflezion.
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Then to compute the contraction produced by refraction we find
from the refraction table, for the given observed altitudes, the
contractions of the vertical semidiameters (Art. 132),

as=0"4 AS =9"6

With the approximate altitudes and distance of the centres we
then proceed by (445), as follows:

d' =45°1¢ log cosec d’ 0.1498 log cosec d’  0.1498
N =52 51 log sec A’ 0.2190
H= 912 log sec H' 0.0056
m =563 87 log cos m 9.7782 log cos m 9.7782
m—H =44 25 log sin (m — H') 9.84560
m—hk = 0 46 log sin (m — A’) 8.1265
9.98656 8.0546
log sin § ¢ 9.9933 log 8in § Q 9.0278
¢g= 169956 Q= 121
log cost ¢ 9.9456 log cos? @ 9.9800
log As 9.6021 log AS 0.9823
9.6477 0.9623
Ascos?g = 0.”4 AScos?' Q= 9.2
Hence we have, by (446),
d" = 44° 36’ 58".6
d—ascos’g = 16 86 .7
S— aScos Q= 15 58 .8

d'=45 934 .1

8d. To find the apparent and true altitudes of the centres.—The
apparent altitudes of the centres will be found by adding the
contracted vertical semidiameters to the observed altitudes of the
limbs. The apparent altitudes, however, need not be computed
with extreme precision, provided that the differences between
them and the true altitudes are correct; for it is mainly upon
these differences that the difference between the apparent and
true distance depends.

The reduction of the moon’s horizontal parallax to the point
O for the latitude 35° is, by Table XIII., ax = 3’.9; and hence
we have

=7+ am =60 5".8

and the computation of the altitudes by (447) is as follows:
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A" =52°3¢ 0" H" = 8° 56' 23"
Vert. semid. = 16 37 Vert. semid. = 15 58
K =52 50 37 H =9 12 21
Table I. r = 427 R = 533 .6
AN—r =52 49 5¢ .3 H—R =9 647 4
iog =, 3.55700 log P 0.9345
log cos (A’ — r) 9.78115 log cos (H'— R) 9.9945
3.33815 0.9290
meo8s (W —r) = 3618”5 Pcos(H'—R) = 8".5

h, = 53° 26’ 12".8 H, = 9°655".9

4th. We now find the distance d, by (448) and (449), as follows:

d'=45° 9341
h" =52 50 37 logsec 0.2189683
H'= 9 12 21 logsec 0.0056335
m=>53 36 16 .1 logcos 9.7733154
m—d' = 8 26 42. logcos 9.995265%4
h, =53 26 12 .8 log cos 9.7750333
H= 9 655.9 logcos 99944803
2) 9.7626962
9.8813481
t(h,4+ H)=231 16 34 4 logcos 9.9318007 ......... 9.9318007

log sin M 9.9495474 log cos M 9.6583265

$4d, =22 54 7.9 log sin 4 d, 9.5901272
d,=45 48 15 .8
5th. To find the geocentric distance, we have, by (450),
for ¢ = 85°,
log A 7.8249 d=+414°19
log = 3.5565 4d=— 4 3
logsing  9.7586
L1400 .ooovvniniiien .l 1.1400
logsin 4 n8.8490 log sin 8 9.3932
log cosec d;, 0.1445 log cot d; 0.0122
n0.1335 n0.5454
—1"4 —3"5
d—d,=—4"9

d = 45° 48' 10".9

6th. To find the Greenwich mean time corresponding to d,
Vor. I.—26
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and hence the longitude, according to Art. 66, we find an ap-
proximate time (7') 4 ¢ by simple interpolation, and then the
required time 7, = (T') 4 t + af, taking at from Table XX,
with the arguments f and a@Q (= increase of the logarithms in
the Ephemeris in 8*), as follows:

By the American Ephemeris of 1856 for March 9, we have

(T)=15 0= 0 (d)=45° 40 54" @=02510 aQ=+17
d =45 48 10 .9

t = 012 59 716.9 log =2.6404
at= — 1 logt =2.8914
T,=15 12 58
T= 514 6
L = 9 58 52

B.—The Approximative Method.

249. T shall here give my own method (first published in the
Astronomical Journal, Vol. IL), as it yet appears to me to be
the shortest and most simple of the approximative methods
when these are rendered sufficiently accurate by the introduction of all
the necessary corrections. Its value must be decided by the im-
portance attached to a precise result. There are briefer methods
to be found in every work on Navigation, which will (and should)
be preferred in cases where only a rude approximation to the
longitude is required.

As before, let

I, H' = the apparent altitudes of the centres of the moon -
and sun,
d" = the observed distance of the limbs,
s, 8 = their geocentric semidiameters,
7, P = their equatorial horizontal parallaxes,
8’ = the moon’s semidiameter, augmented by Table
XIIL,,
=, = the moon’s parallax, augmented by Table XIII

We shall here also first reduce the distance to the point O of
Art. 97. The contractions of the semidiameters produced by
refraction will be at first disregarded, and a correction on that
account will be subsequently investigated. If then in Fig. 29,
p- 394, M’ and 8’ denote the apparent places, M and S the places
reduced to the point O, we shall here have
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d'=d"+¢+8=M5, d, = MS,
K = 90° — ZM, H'=90°— Z§,
h, = 90° — ZM, H, = 90° — Z8,

and the two triangles give

cos d, — sin k,sin H,  cos d’ — sin }’sin H'

co8 Z = = . ’
cos h, cos H, cos &' cos H'

from which, if we put

sin A sin H, cos h, cos H,
— n— R —

" sinh'sin H' " cos A’ cos H'

we derive

cosd’ —cos d,= (1 —n)cos d’ -+ (n —m)sin A'sin H’ (@)
Put
ad=d,—d’ Ah=h—N AH=H'—H, ®)

then we have

cos d'— cos d, =2 sin } ad sin (d' 4 } ad) ©

and
n— 508 (X + ak) _cos (H'— aH)

cos i’ cos H'
. < 1y . . .
=(1_28In§AhSln(h+}Ah))X’(l_‘_ZSIn}Ath(H—}AH))
cos k' cos H'
__2sin}aksin (M4 1ak) _ 2sint aHsin(H'—{aH)
- cos ' cos H'
4 sin} ahsin § AH sin (R’ 4 } ah)sin (H' — }aH)
cos &' cos H'

1—n

+ @

Also

. sin A’ cos k, sin H' cos H, — cos /' sin h, cos H' sin H,

sin A’ cos A’ sin H' cos H'

substituting in which the values

28in &' cos b, =s8in (24 + ak) —sinahk

2 cos k' sin b, =sin (2k' 4 ah) 4 sinak

2 sin H'cos H,= sin 2H' — aH) + sinaH

2 cos H'sin H, = sin (2H' — aH) —sinaH
we find

n—m— gina Hsin (24’4 ak)—sin aksin(2 H'—a H)

- 2 sin A’ cos A’ sin H' cos H'

O]
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Substituting (c), (4), and (¢)'in («), and at the same time, for
brevity, putting
2 sin } ah sin (K + {ah)

A, =
cos A’
B — — sinahsin (2 H'— aH)
17 2 cos &’ cos H’
o _ 2sin}aHsin (H'— jaH)
! cos H'
D — sin A H sin (2 k' 4 akh)
17 2 cos A’ cos H'

we have
2s8in } adsin(d'+ $ ad)=A,co8d’+ B, + C,cosd’'+D,— 4,C, cosd’ (f)

This formula is rigorously exact; but, since ad is always less
than 1°, it will not produce an error of 0’/.1 to substitute the arcs
3 ad, } ah, &c. for their sines, or } ad sin 1", } ah sin 1”7, &e. for
sin } ad, sin-} ak, &c.; and therefore we may write

adsin(d'+31ad)=A4,cosd'+ B,+C,cosd’'+D,—A,Cisin1” cosd’ (g)

in which 4,, B,, C,, D,, now have the following signification :

A, = c:«shh’ -sin (K 4 tahk)
B, —— ah .sin(?.H'—AH)
cos A’ 2 cos H'
C=— 22 gn@—iam)
cos H'
aH sin(2Nk 4+ ak)
'Dl == .

cos H' 2 cos h'

The next step in our transformation consists in finding con-
venient and at the same time sufficiently accurate expressions
of ah and aH. Let

r, R = the true refractions for the apparent altitudes A’ and
H';

then we have,within less than 0".1,

ah=mcos(h’ —r)—r
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If we neglect r in the term =z, cos (A’ — r), the error in this term
will never exceed 1’/; but even this error will be avoided by
taking the approximate expression

cos (A’ — r)= cos &’ 4 sin r sin A’
and we shall then have
Ah='m, cos ¥’ — r 4 =, sin r sin ¥’

= (r, cos b’ — 7‘)( 1 +:l——l ::s;,sff )
Since the second term of the second factor produces but 1"
in ah, we may employ for it an approximate value, which will
still give ak with great precision. Denoting this term by £, we
have

P sinrsin®’ __ sinr tan &’

m co8 b/ —r _1_ r
mcos A’

or, very nearly, -

k=sinrt h’(l T _
1T ian + xlcosh')

If we put
r—=acoth,

in which @ has the value given in Table II., we have

. an a
k=asinl (1 + x,sinh’)
Now, a increases with 4/, but in such a ratio that k remains very
nearly constant for a constant value of 7, We may without
sensible error take mx, = 57/ 80"’ = 3450"/, which is about the
mean value of 7z, and we shall find for a mean state of the air,
by the values of a given in Table IL,

forh'= 5° k = 0.000291
KN=45 k = 0.000286
=90 k = 0.000285
Hence, if we take
k = 0.00029
the formula :
ah = (z, cos K — r) (L + &) (452)

will give ah within gy of its whole amount, that is, within less
than 0’7.02'in a mean state of the air. For extreme variations
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of the density of the air, it is possible that the refraction may
be increased by its one-sixth part, and k will also be increased
by its one-sixth part. But, as the term depending on % is not
more than 1”7, the error in ah, even in the improbable case
supposed, will not be greater than 0”7.16. The formula (452)
may therefore be regarded as practically exact with the value
k = 0.00029.

A strict computation of the sun's or a planet’s altitude requires

the formula .
AH=R—Pcos(H'— R)

but Pis in all cases so small that the formula
AH—=—R— PcosH' (453)

will always be correct within a very small fraction of a second.
Now, let

—_T R

~ cos k' " cos H' - #59
The quantities  and R’ computed from the mean values of the
refraction are given in Table XIV. under the name ¢Mean
Reduced Refraction for Lunars.” The numbers of the table
are corrected for the height of the barometer and thermometer
by means of Table XIV.A and B. These tables are computed
from BEsseL’s refraction table, assuming the attached ther-
mometer of the barometer, and the external thermometer, to
indicate.the same temperature, which is allowable in our present
problem.* By the introduction of ' and R’, we obtain

ah AH
cos b m—r)A+h cos H'

=R'—P

and the coefficients of formula (g) become

* If it is desired to compute 7 and R’ with the utmost rigor, it can be done by
Table II., by taking (Art. 107)

e aﬁ‘y‘ RI= aﬂ‘)l
sin A’ sin H'

The tables XV. and XV.A and B give the correct values to the nearest second in all
practical cases.
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8o that if we put
__ad’sin 1"cos (d' 4 }ad)

X =
2gin d’
or, within 0”7.15,
x = — tad*sin 1” cot d’ (457)
we have
ad=A+ B+ C+D+zx (458)

The terms A4’, B, C’, and D’ are computed directly from the
apparent distance and altitudes by (456), and with sufficient
accuracy with four-figurelogarithms. Thelogarithmsof A, B, C, D,
are given in Table XV, log 4 and log D with the arguments
7, —r’ and A’; log B and log C with the arguments R'— P
and H’. In the construction of this table ak and aH are com-
puted by (452) and (458), and then the logarithms of 4, B, C, D,
by (455).

The sum A’+ B’ + C’+ D’ is called the “first correction of the
distance,” and, being very nearly equal to ad, is used as the argu-
ment of Table XVIL., which gives x, or the “second correction
of the distance,” computed by (457). When z is greater than 30"
and the distance small, it will be necessary to enter this table a
gecond time with the more correct value of ad found by em-
ploying the first value of z.

The correction ad being thus found and added to d’, we have
d,, or the distance reduced to the point O. The reduction to the
centre of the earth is then made by (450). This reduction is
also facilitated by a table. If we put

sin 4 sin ¢
V= A"(sin d, tan d;)
and then )
a-._—:—-A.nsma b=A1ts.md
tan dl sin d,
we shall have
N=a+bd (459)

and a Md b can be taken from Table XIX. where a is called “the
first part of IV,” and b “the second part of N.” We then have

d—d,= Nsin g (460)

which is the correction to be added to d, to obtain the geocentric
distance d. Table XIX. is computed with the mean value of
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7 = 57’ 80’’, which will not produce more than 1’/ error in
d — d, in any case. But, if we wish to compute the correction
for the actual parallax, we shall have, after finding N by the
table,

©

d —d,— N sin
1= AR X S0

(460%)

7 being in seconds.

The trouble of finding the declinations of the bodies and the
use of Table XIX. would be saved if the Almanac contained the
logarithm of &V in connection with the lunar Ephemeris. The
value of log Vin the Almanac would, of course, be computed
with the actual parallax, and (460) would be perfectly exact. -

We have yet to introduce corrections for the elliptical figure
of the discs of the moon and sun produced by refraction. These
corrections are obtained by Tables XVII. and XVIIL, which are
constructed upon the following principles. Let

as,, oS = tho contractions of the vertical semidiameters,
as, AS = the contractions of the inclined semidiameters;

then we have (Art. 133)
a8 = AS, cos’q aS = a8, cos® @

where ¢ = the angle ZM'S’ (Fig. 29) and @ =ZS’M'. We
have
sin H' — sin A’ cos d’

c8g= cos A’ sin d’
But, by (456), .
gin H" B’ sin A’ cosd’ A
cosh'sind’~  B(m,—r)cos k'  cosh'sind’  A(x,—r')cosh’
8o that
CcO8 § — _(ﬁ + E) __1__
1= \A "B )Em—r)ycos k¥

If we put A =1 and B =1, which are approximate values, we
ghall have

_ A'+ B’
cosg= (=, —7") cos ¥’
AL BT :
a8 = a8 ————— 461
? " [(:rl —1’) cos h’] (61
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a8 = 4"+ B)’X%

For the sun, Table XVIII. A, with the arguments H’ and R’ — P,
gives the value of ' ‘
(R’ — P)*cos* H'

G = F
A, X

L . 2nd Table XVIILB gives

in which F= 200

as=(C'+ D’)’xg

In these tables 4’4 B’ is called the ¢ whole correction of the
moon,” and C’-+ D’ the “whole correction of the sun.” As
these quantities are furnished by the previous computation of
the true distance, the required corrections are taken from the
tables without any additional computation.

The values of as and aS are applied to the distance as follows:
when the limb of the moon nearest to the star or planet is
observed, as is to be subtracted, and when the farthest limb is
observed, as is to be added; when the sun is observed, both as
and a8 are to be subtracted from d.

In strictness, these corrections should be applied to the dis-
tance d’, and the distance thus corrected should be employed in
computing the values of 4’, B’, (', and D’. This would
require a repetition of the computation after as and aS had been
found by a first computation; but this repetition will rarely
change the result by 0”7.5. In the extreme and improbable case
when the distance is only 20° and one body is at the altitude 5°
and the other directly above it in the same vertical circle (so that
the entire contraction of the vertical semidiameter comes into
account), such a repetition would change the result only 1”.8;
and even this error is much less than the probable error of
sextant observations at this small altitude, where the sun and
moon already cease to present perfectly defined discs.

250. I shall now recapitulate the steps of this method.
1st. The local mean time of the observation being 7, and the
assumed longitude L, take from the Ephemeris, for the approxi-
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mate Greenwich time 7' 4 L, the quantities s, S, 7, P, 4, and 4.
(For the sun we may always take P— 8/7.5; for a star, $=0,
P=0.)

2d. If A, H"", d’" denote the observed altitudes and distance
of the limbs, find

8’ = 8 4 correction of Table XII.,
=, = = - correction of Table XIII.,

and the apparent altitudes and distance of the centres,
W=Wzx¢,  H=H'TS d=d"+s=8§

upper signs for upper and nearest limbs, lower signs for lower
and farthest limbs.

For the altitudes A’ and H’, take the “reduced refractions”
r’ and R’ from Table XIV.,, correctmg them by Table XIV.A
and B for the barometer nnd thermometer. Then compute the
quantities

A'=  (z,— 1) Asin k' cotd’ C' =—(R'— P) C'sin H' cotd’
B'= —(s,— ) Bsin H'cosecd’ D'= (R'—P).Dsin} cosecd’

for which the logarithms of A4, B, C, and D are taken from
Table XV. In this table the argument zx, — r’ is called the
“reduced parallax and refraction of the moon,”” and R’ — P the
“reduced refraction and parallax of the sun (or planet) or star.”
For a star this argument is simply R'.

‘When d’'> 90°, the signs of A’ and C” will be reversed. It
may be convenient for the computer to determine the signs by
referring to the following table :

) I i
ZIDREE:
d'>90° | — | — | + | + |

3d. The terms A’ and B’, which depend upon the moon’s
parallax and refraction, may be called the first and second parts
of the moon’s correction, and the sum A’ 4 B’ the *“whole cor-
rection of the moon.” In like manner, ¢’ and D’ may be called
the first and second parts of the sun’s, planet’s, or star’s correc-
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tion, and the sum C’ -+ 1V the “whole correction of the sun,
planet, or star.”

The sum of these corrections = 4’ + B’ + C'+ D’ may be
called the ¢first correction of the distance.” Taking it as the
upper argument in Table XVI,, find the sccond correction =z,
the sign of which is indicated in the table.

4th. Take from Table XVIL.A and B the contraction of its
inclined semidiameter = as. If the sun is the other body, take
also the contraction from Table XVIII.A and B, = aS. The
sign of either of these corrections will be positive when the
farthest limb is observed, and negative when the nearest limb is
observed.

5th. The correction for the compression of the earth is =
N sin ¢, ¢ being the latitude; and N may be accurately com-
puted by the formula

No= A(smd sin«))

sin d tand,

or it may be found within 1” by Table XIX., the mode of con-
sulting which is evident. The sign of N sin ¢ will be determined
by the signs of Nand sin ¢, remembering that for south latitudes
sin ¢ is negative.

All the corrections being applied to d’, we have the geocen-
tric distance d; and hence the corresponding Greenwich time
and the longitude.

ExaMpLE.—Let us take the example of the preceding article
(p- 899), in which the observation gives

1856, March 9th, ¢ — 35°.
T = 514=6° D A" =52°34 0" Barom. 29.5in.
Assumed Z =10 0 0 O H'= 8 5623 Therm. 58° F.
Approx.Gr.T.=15 14 6 N O d” =44 86 58.6

By the Ephemeris, we have

s =16'23".1 = =601"9 S=16'8"0 P=28"6
Table XI1I. 4+ 14 .0 Tab. XIII. 43 .9 3=+ 14° 4=—4>
§=1637 .1 =60 5 .8

The computation may be arranged as follows:
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251. In consequence of the neglect of the fractions of a second
inseveral parts of theabove method, it is possible thatthe computed
distance may be in error several seconds, but it is easily seen
that the error from this cause will be most sensible in cases
where the distance is small; and, since the lunar distances are
given in the Ephemeris for a number of objects, the observer
can rarely be obliged to employ a small distance. If he confines
himself to distances greater than 45° (as he may readily do), the
method will rarely be in error so much as 2'/, especially if he
also avoids altitudes less than 10°. 'When we remember that
the least count of the sextant reading is 10”/, and that to the
probable error of observation we must add the errors of gradua-
tion, of eccentricity, and of the index correction, it must be con-
ceded that we cannot hope to reduce the probable error of an
observed distance below 5”, if indeed we can reduce it below
10’”.  Our approximate method is, therefore, for all practical
purposes, a perfect method, in relation to our present means of
observation.

252. If the altitudes have not been observed, they may be
computed from the hour angles and declinations of the bodies,
the hour angles being found from the local time and the right
ascensions. But the declination and right ascension of the moon
will be taken from the Ephemeris for the approximate Green-
wich time found with the assumed longitude. If, then,the assumed
longitude is greatly in error, a repetition of the computation may
be necessary, starting from the Greenwich time furnished by the
first. As a practical rule, we may be satisfied with the first
computation when the error in the assumed longitude is not
more than 30*. In the determination of the longitude of a fixed
point on land, it will be advisable to omit the observation of the
altitudes, as thereby the observer gains time to multiply the
observations of the distance. But at sea, where an immediate
result is required with the least expenditure of figures, the alti-
tudes should be observed.

253. At sea, the observation is noted by a chronometer regu-
lated to Greenwich time, and the most direct employment of the
resulting Greenwich time will then be to determine the true
correction of the chronometer. This proceeding has the advan-
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by differentiating which we tind

cos 3 cos 4 sin (a — A) 2
* Oa

éd = -
sin d
_cosdsm.l—sm'dcosd cos (a—A)‘M (464)
sin d
If then
v = the change of distance in 3%,
we shall have
13
3L = —3dd X 3; (465)

in computing which we employ the proportional logarithm of the

13
Ephemeris, @ = log %,reduced to the time of the observation.

ExampLE.—At the time of the observation computed in Art.
250, we have

Moon,a = 2* 11~ 14° s =4 14°18'4

Sun, 4=23 22 25 4=— 4 8.1

a—A= 249 19 d= 45 48.2
= 42°19'8

with which we find, by (464),
3d = 0.908 da 4 0.350 2

and hence, by (465), with log @ = 0.2511,
6L = — 1.62 da — 0.62 89

Suppose then we find from the Greenwich observations da =
— 0.38 = — 5.7 and d¢ = — 4''.0, the correction of the longi-
tude above found will be -

8L = + 117

255. To find the longitude by a lunar distance not given in the
Ephemeris.—The regular lunar-distance stars mentioned in Art.
247 are selected nearly in the moon’s path, and are therefore in
general most favorable for the accurate determination of the
Greenwich time. Nevertheless, it may occasionally be found
expedient to employ other stars, not too far from the ecliptic.
Sometimes, too, a different star may have been observed by
mistake, and it may be important to make use of the observation.

Vou. L.—27
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The true distance d is to be found from the observed distance
by the preceding methods, as in any other case. Let the local
time of the observation be 7, and the assumed longitude L.
Take from the Ephemeris the moon’s right ascension @ and de-
clination 8 for the Greenwich time 7 + L, and also the star’s
right ascension 4 and declination 4; with which the correspond-
ing true distance d, is found by the formula

cos d,= sin & 8ind -} cos & cos 4 cos (a — A)

Then, if d = d,, the assumed longitude is correct; if otherwise,
put

A = the increase of a in one minute of mean time,

A = tho increaso of § ¢ “ “ “«

y = the increase of d ¢ “ “ “

then we have, by (464),

__cosdcos 4sin (a —4) 2 cos 8 8in 4 — 8in 8 cos 4 08 (a — A) P
sin d, sin d,
and hence the correction of the assumed longitude in seconds
of time,
60
L= (d—d)

For computation by logarithms, these formule may be ar-
ranged as follows :

tan M — _ tand
cos (o — A)
i 3—M
0o d, = sin 4 co.s ( M)
sin M

(466)
cos & cos 4 8in (o — 4)

sin d,

60 (d—d,)
- r

r==4 + B.cot d,tan(é — M)

3L

ExampLe.—Suppose an observer has measured the distance
of the moon from Arcfurus, at the local mean time 1856 March
16, T'= 10* 30~ 0, in the assumed longitude L = 6* 0= (", and,
reducing his observation, finds the true distance

d = 73° 55' 10”
what is the true longitude ?
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the instant of the observation. The data from the Ephemeris
required in computing the local time are taken for the Greenwich
time given by the chronometer.

ExaMpLe.—A ship being about to sail from New York, the
master determined the correction on Greenwich time and the
rate of his chronometer by observations on two dates, as follows:

1860 April 22, at Greenwich noon, chron. correction = - 8= 10°.0

“ “« 30, “ « “« « =43 43.6
Rate in 8 days = 4 33.6
Daily rate = <+ 42

On May 18 following, about 7* 80 A.M., the ship being in lati-
tude 41° 33’ N., three altitudes of the sun’s lower limb were
observed from the sea horizon as below. The correction of the
chronometer on that day is found from the correction on April 30
by adding the rate for 18 days. (It will not usually be worth
while to regard the fraction of a day in computing the total rate
at sea.) The record of the observation and the whole computa-
tion may be arranged as follows:

1860 May 18. ¢ — 41° 8%’

Chronometer 9* 87m 21, © 29° 40’10 Barom. 80.32%,
« 37 53. "« 48 0 Therm. 59° F.
« 38 20. « 50 50
Mean = 9 87 51.8 Mean = 29 45 40
Correction =4 4 59.2 Indexcorr.— — 110
Gr. date — May 17, 21 42 50.5 Dip =— 4 2
for which time we take from the 29 40 28
Ephemeris the quantities Semid. =+ 1560
@©’s 6 = 19° 88’ 89" Refraction —= — 1 42
Semidiameter = 16’ 50” Parallax = 8
Equation of time —= — 8™ 49.8 h =29 64 44
¢9—=41 8 0 sec. 0.12588
P=70 2121 sec. 0.02604
¢ =70 04 38 cos 9.51464
s —h =40 59 49 cos 9.81692
'9.48348
Apparent time — 782" 6.8 sin 9.74174
Eq. of time =— 8 49.8
Local mean time — 19 28 16.5
Gr. o —2]1 42 50.6
Longitude = 214 8¢ —=383°88.56W.

In this observation, the sun was near the prime vertical, a posi-
tion most favorable to accuracy (Art. 149).
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" The method by equal altitudes may also be used for finding
the time at sca in low latitudes, as in Arts. 158, 159.

258. In order that the longitude thus found shall be worthy
of confidence, the greatest care must be bestowed upon the
determination of the rate. As a single chronometer might
deviate very greatly without being distrusted by the navigator,
it is well to have at least three chronometers, and to take the
mean of the longitudes which they severally give in every case.

But, whatever care may have been taken in determining the
rate on shore, the sea rate will generally be found to differ from
it more or less, as the instrument is affected by the motion of the
ship; and, since a cause which accelerates or retards one chro-
nometer may produce the same effect upon the others, the agree-
ment of even three chronometers is not an absolutely certain
proof of their correctness. The sea rate may be found by
determining the chronometer correction at two ports whose
difference of longitude is well known, although the absolute
longitudes of both ports may be somewhat uncertain. For this
purpose, a “ Table of Chronometric Differences of Longitude” is
given in RAPER’'S Practice of Navigation, the use of which is
illustrated in the following example.

ExamMpLE.—At St.Ielena, May 2, the correction of a chro-
nometer on the local time was + 0* 23~ 10°.3. At the Cape of
Good Hope, May 17, the correction on the local time was
— 1* 14~ 28.6 ; what was the sea rate ?

We have

Corr. at St. Helena, May 2d + 0* 23~ 103

1

Chron. diff. of long. from Raper —1 36 45.
Corr. for Cape of G. H,May2d = —1 13 34.7
« “ “ « 17th = —1 14 28.6
Rate in 15 days = — 53.9
Daily sea rate = — 38.59

259. By lunar distances.—Chronometers, however perfectly
made, are liable to derangement, and cannot be implicitly relied
upon in a long voyage. The method of lunar distances (Arts.
247-256) is, therefore, employed as an occasional check upon the
chronometers even where the latter are used for finding the
longitude from day to day. When there is no chronometer on
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board, the method of lunar distances is the only regularly avail-
able method for finding the longitude at sea, at once sufficiently
accurate and sufficiently simple.

As a check upon the chronometer, the result of a lunar distance
is used as in Art. 253.

In long voyages an assiduous observer may determine the sea
rates of his chronometers with considerable precision. For this
purpose, it is expedient to combine observations taken at various .
times during a lunation in such a manner as to eliminate as far
as possible constant errors of the sextant and of the observer (Art.
256). Suppose distances of the sun are employed exclusively.
Let two chronometer corrections be found from two nearly equal
distances measured on opposite sides of the sun on two different
dates, in the first and second half of the lunation respectively.
The mean of these corrections will be the correction for the
mean date, very nearly free from constant instrumental and
personal errors. In like manner, any number of pairs of equal,
or nearly equal, distances may be combined, and a mecan chro-
nometer correction determined for a mean date from all the
observations of the lunation. The sea rate will be found by
comparing two corrections thus determined in two difterent
lunations. This method has been successfully applied in voyages
between England and India.

260. By the eclipses of Jupiter's satellites.—An observed eclipse
of one of Jupiter's satellites furnishes immediately the Green-
wich time without any computation (Art. 225.) But the eclipse
is not sufficiently instantaneous to give great accuracy ; for, with
the ordinary spy-glass with which the eclipse may be observed
on board ship, the time of the disappearance of the satellite may
precede the true time of total eclipse by even a whole minute.
The time of disappearance will also vary with the clearness of
the atmosphere. Since, however, the same causes which accele-
rate the disappearance will retard the reappearance, if both
phenomena are observed on the same evening under nearly the
same atmospheric conditions, the mean of the two resulting
longitudes will be nearly correct. Still, the method has not the
advantage possessed by lunar distances of being almost always
available at times suited to the convenience of the navigator.

261. By the moon’s altitude.—This method, as given in Art. 243,
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is vertical to an observer at the point M of the globe (Fig 82).
Let a small circle 44’4’ be described on
the globe from M as a pole, with a polar dis- Fig. 32.
tance MA equal to the zenith distance, or
complement of the observed altitude, of the
sun. It is evident that at all places within
this circle an observer would at the given
time observe a smaller zenith distance, and
at all places without this circle a greater 4
zenith distance; and therefore the observa-
tion fully determines the observer to be on
the circumference of the small circle A4A4’4". If, then, the
navigator can project this small circle upon an artificial globe or
a chart, the knowledge that he is upon this circle will be just as valuable
to him in enabling him to avoid dangers as the knowledge of either his
latitude alone or his longitude alone; since one of the latter elements
only determines a point to be in a certain circle, without fixing
upon any particular point of that circle.

The small circle of the globe described from the projection of
the celestial object as a pole we shall call a circle of position.

264. To find the place on the globe at which the sun is vertical (or the
sun's projection on the globe) at a given Greenwich time.—The sun’s
hour angle from the Greenwich meridian is the Greenwich
apparent time. The diurnal motion of the earth brings the sun
into the zenith of all the places whose latitude is just equal to
the sun’s declination. Hence the required projection of the
sun is a place whose longitude (reckoned westward from Green-
wich from 0* to 24*) is equal to the Greenwich apparent time,
and whose latitude is equal to the sun’s declination at that time.

265. From an altitude of the sun taken at a given Greemwich time,
to find the circle of position of the observer, by projection on an artificial
globe.—Find the Greenwich apparent time and the sun’s declina-
tion, and put down on the globe the sun’s projection by the
preceding article. From this point as a pole, describe a small
circle with a circular radius equal to the true zenith distance
deduced from the observation. This will be the required circle
of position.

266. The preceding problem may be extended to any celestial
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object. The pole of the circle of position will always be the
place whose west longitude is the Greenwich hour angle of the
object (reckoned from 0* to 24*) and whose latitude is the decli-
nation of the object. The hour angle is found by Art. 5.

267. To find both the latitude and the longitude of a ship by circles of
position projected on an artificial globe.—First. Take the altitudes
of two different objects at the same time by the Greenwich
chronometer. Put down on the globe, by the preceding problem,
their two circles of position. The observer, being in the circum-
ference of each of these circles, must be at one of their two points
of intersection; which of the two, he can generally determine
from an approximate knowledge of his position.

Second. Let the same object be observed at two different times,
and project a circle of position for each. Their intersection
gives the position of the ship as before. If between the observa-
tions the ship has moved, the first altitude must be reduced to
the second place of observation by applying the correction of
Art. 209, formula (880). The projection then gives the ship's
position at the second observation.

268. From an altitude of a celestial body taken at a given Greemrich
time, lo find the circle of position of the observer, by projection on a
Mercator chart.—The scale upon which the largest artificial globes
are constructed is much smaller than that of the working charts
used by navigators. But on the Mercator chart a circle of

position will be distorted, and can only
Fig. 33. be laid down by points. Let L, L', L"
J / (Fig. 83) be any parallels of latitude
4 2 crossed by the required circle. For each
of these latitudes, with the true altitude
found from the observation and the polar
distance of the celestial body taken for
the Greenwich time, compute the local
time, and hence the longitude, ¢ by chro-
nometer” (Art. 257). Let [, I/, I' be the
longitudes thus found. Let A4, A’, A” be the points whose
latitudes and longitudes are, respectively, L, l; L', I'; L",l";
these are evidently points of the required circle. The ship is
consequently in the curve AA’A”, traced through these
points.

rror
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so great as to affect sensibly the declination which is taken from
the Ephemeris for thetime given by the chronometer. Thismethod
is, therefore, a convenient substitute for the usual method of find-
ing the latitude at sea by two altitudes, a projection on the sailing
chart being always suflicient for the purposes of the navigator.
Instead of reducing the first altitude for the change of the ship's
position between the observations, we may put down the circle
of position for each observation and afterwards shift one of them

Fig. 35. by a quantity due to the ship’s run.

)] A a . Thus, let the first observation give the
position line A4’ (Fig. 85), and let Aa

% represent, in direction and length, the
AV L ghip’s course and distance sailed be-

tween the observations. Draw aa’
parallel to A4’. Then, BB’ being the position line by the
second observation, its intersection C with aa’is the required
position of the ship at the second observation.

270. If the latitude is desired by computation, independently
of the projection, it is readily found as follows. Let

l,, I, = the longitudes (of 4 and B) found from the first and
second altitudes respectively with the latitude Z,
l/,l} = tho longitudes (of A’ and B') found from the same
altitudes with the latitude L',
L, = the latitude of C.

From Fig. 84 we have, by the similarity of the triangles ABC
“and A'B'C,

Y—1's1,—1L,=B'C: BC
whence

&= +0—1b):,—L,=BB: BC=L'—L: L—1L

(L'—L) (I, — 1)
&=+ ¢—5)

This formula reduces SuMNER’S method of ¢ double altitudes”
to that given long ago by LALANDE (Astronomie, Art. 3992, and
Abrégé de Navigation, p. 68). The distinctive feature of STMNER'S
process, however, is that a single altitude taken at any time is
made available for determining a line of the globe on which the
ship is situated. .

L,=1L + (467)
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more concentric circles on the ground from the foot of the stake
as a centre. Atthe two instants before and after noon when the
shadow of the stake extends to the same circle, the azimuths of
the shadow east and west are equal. The points of the circle at
which the shadow terminates at these instants being marked, let
the included are be bisected ; the point of bisection and the centre
of the stake then determine the meridian line. Theoretically, a
small correction should be made for the sun’s change of declina-
tion, but it would be quite superfluous in this method.

275. By single altitudes.—With an altitude and azimuth instru-
ment, observe the altitude of a star at the instant of its passage
over the middle vertical thread (at any time), and read the
horizontal circle. Correct the observed altitude for refraction.
Then, if

h = the true altitude,
= the latitude of tho place of observation,
p = the star’s polar distance,
A = the star’s azimuth,
A’ = the reading of the horizontal circle,

we have, from the triangle formed by the zenith, the pole, and

the star,

sin (s — ¢) 8in (s — A)
cos s cos (s — p)

tan'}d = (468)

in which

s=4e+hr+p

In this formula the latitude may be taken with the positive sign,
whether nérth or south, and p is then to be reckoned from the
elevated pole ; consequently, also, A will be the azimuth reckoned
from the elevated pole.

It is evident that in order to bring the telescope into the plane
of the meridian we have only to revolve the instrument through
the angle A4, and therefore either 4’+ 4 or A’— A, according
to the direction of the graduations of the circle, will be the
reading of the horizontal circle when the telescope is in the
meridian.

The same method can be followed when the azimuth is ob-
served with a compass and the altitude is measured with a sex-
tant ; and then A’ — A is the variation of the compass.
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276. From the first equation of (50), ¢ and & being constant,
we have .

dd=—_9
cos A tan ¢

and therefore an error in the observed altitude will have the
least effect upon the computed azimuth when tan ¢ is a maxi-
mum; that is, when the star is on the prime vertical. There-
fore, in the practice of the preceding method the star should be
as far from the meridian as possible.

277. By equal altitudes of a star.—Observe the azimuth of a star
with an altitude and azimuth instrument, or a compass, when at
the same altitude east and west of the meridian. The mean of
the two readings of the instrument is the reading when its
gight line is in the direction of the meridian. This is the
method of Article 274, rendered accurate by the introduction
of proper instruments for observing both the altitude and the
azimuth.

278. If equal altitudes of the sun are employed, a correction
for the change of the sun’s declination is necessary, since equal
azimuths will no longer correspond to equal altitudes. Let

A’ = tho east azimuth at the first observation,
A= ¢ west « “  gecond ¢
& = tho declination at noon,
a8 = the incroase of declination from the first to the second
observation,

then, by (1), we have, % being the altitude in each case,

8in (6 — 1 ad) = sin ¢ 8in A — cos ¢ cos k cos A’
sin (5 4+ 3 ad)—=sinp sin h — cos ¢ cos h cos 4

the difference of which gives
2 cosdsin}ad=2cos ¢ cos hsin} (4 4 4") sin} (4 — 4')
whence, since ad is but a few minutes, we have, with sufficient

accuracy, , s
Ad COS

A—A'=—"
cos ¢ cos h sin 4

(169)
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It will be necessary to note the times of the two observations
in order to find ad. -If we take half the elapsed time as the
hour angle ¢ of the western observation, we shall have, instead
of (469), the more convenient formula

A—g—=_2 (470)
cos ¢ 8in t
It will not be necessary to know the exact value of &, if only
the same instrumental altitude is employed at both observations.
Now let 4,/ and A4, be the readings of the horizontal circle at
the two observations, then the readings corresponding to equal

azimuths are
Aland 4, — (4 — &)

and, consequently, the reading for the meridian is the mean of

these, or
}(All + Al) - }(A ‘_A’)

That is, the reading for the meridian is the mean of the ob-
served readings diminished by one-half the correction (470).
‘We here suppose the graduations to proceed from 0° to 360°,
and from left to right.

279. By the angular distance of the sun from any terrestrial object.—
If the true azimuth of any object in view is known, the direction
of the meridian is, of course, known also. The following method
can be carried out with the sextant alone. Measure the angular
distance of the sun’s limb from any well-defined point of a
distant terrestrial object, and note the time by a chronometer.
Measure also the angular height of the terrestrial point above
the horizontal plane. The correction of the chronometer being
known, deduce the local apparent time, or the sun’s hour angle ¢
(Art. 54), and then with the sun’s declination ¢ and the latitude ¢
compute the true altitude i and azimuth A of the sun by the
formule (16), or

tan M = t_an_a, tan 4 =w, tan h =cot (p — M) cos 4 (471)
cost sin(p — M)

Now, let O, Fig. 37, be the apparent position of the terrestrial
point, projected upon the celestial sphere ; S the apparent place
of the sun, Z the zenith, P the pole; and put
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D = the apparent angular distance of the Fig. 37.

sun’s centre from the terrestrial point
— the observed distance increased by

the sun’s semidiamoter, r

H — the apparent altitude of the point,

A = the sun’s apparent altitude,

a = tho difference of the azimuth of the g
sun and the point,

A’ = the azimuth of the point. 4

The apparent altitude A’ will be deduced from the true altitude
by adding the refraction and subtracting the parallax. Then in
the triangle SZO we have given the three sides ZS = 90° — ¥,
Z0 = 90°— H, SO = D, and hence the angle SZ0 = a can be
found by the formula
sin (s — H) sin (s — &)

4712)

cos 8 cos (s — D)

s=1H+ K+ D)
A=A +a (478)

tan* {a =

in which

Then we have

and the proper sign of a to be used in this equation must be
determined by the position of the sun with respect to the object
at the time of the observation.

If the altitude of the sun is observed, we can dispense with
the computation of (471), and compute 4 by the formula (468).
The chronometer will not then be required, but an approximate
knowledge of the local time and the longitude is necessary in
order to find ¢ from the Ephemeris.

If the terrestrial object is very remote, it will often suffice to
regard its altitude as zero, and then we shall find that (472)

reduces to .
tanta = /[tan § (D + ') tan } (D — K)] (474)

This method is frequently used in hydrographic surveying to
determine the meridian line of the chart.

ExamMpLE.—From a certain point B in a survey the azimuth
of a point ('is required from the following observation :

Chronometer time — 4* 12m 12¢ Altitude of C — H = 0° 30’ 20"
Chronom. correction=— 2 0 Distance of the nearest limb of the
Local mean time =410 12 sun from the point C — 48° 17’ 10”
Equation of time = — 4 10.9 Semidiameter = 16 1
Local app. time, ¢ =4 6§ 1.1 D —48 33 11

Vor. I.—28
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in which 4 is the azimuth reckoned from the elevated pole. At
this instant the star’s azimuth reaches its maximum, and for a
certain small interval of time appears to be stationary, so that
the observer has time to set his instrument accurately upon the
star.

In order to be prepared for the observation, the time of the
elongation must be (at least approximately) known. The hour
angle of the star is found by the formula

and from ¢ and the star’s right ascension the local time is found,
Art. 55.

The pole star is preferred, on account of its extremely slow
motion.

If the latitude is unknown, the direction of the meridian may
nevertheless be obtained by observing the star at both its eastern
and its western greatest elongations. The mean of the readings
of the horizontal circle at the two observations is the reading for
the meridian.

283. One of the most refined methods of determining the
direction of the meridian is that by which the transit instrument
is adjusted, or by which its deviation from the plane of the
meridian is measured ; for which see Vol. II.

284, At sea, the direction of the meridian, or the variation of
the compass, is found with sufficient accuracy by the graphic
process of Art. 271.
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NS. Let 8/, M’, be the centres of the sun and moon when at
their least true dlstance, and put

B = the moon’s latitude at conjunction —= SM,

I = the inclination of the moon’s orbit to the ecliptic,

A = the quotient of the moon’s motion in longitude divided
by the sun’s,

Z = the least true distance = S'M’,

y = the angle SMS’.

‘We may regard NMS as a plane triangle; and, drawing M'P
perpendicular to NS, we find

S'=ﬁtanr SP=APtanr
and hence

S'P=80—1)tany M'P—f—ifptanytan I
2= [(A — 1)*tan?y -+ (1 — 2 tan I tan y)*]

To find the value of y for which this expression becomes a mini-
mum, we put its derivative taken relatively to y equal to zero,
whence

Atanl

(A—12+4 2tan’l

tan y=

which substituted in the value of 3'* reduces it to

X’: ﬁ, (l _ 1)’
(A—1y + 2 tan*T

If then we assume I’ such that

tan I' =

tan I (475)

we have for the least true distance
= f cos r (476)

The apparent distance of the centres of the sun and moon as
seen from the surface of the earth may be less than I by the
difference of the horizontal parallaxes of the two bodies : so that
if we put

7 = tho moon’s horizontal parallax,
7' = the sun’s “ “
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we have
minimum apparent distance = & — (= —n’)

An eclipse will occur when this least apparent distance of the
centres is less than the sum of the semidiameters of the bodies;
and therefore, putting

8 = the moon’s semidiameter,
& = the sun’s “«

we shall have, in case of eclipse,

T—(r—)<s+¢

or

peosl' <n—=n' 484 ¢ 4

This formula gives the required limit with great precision;
but, since I’ is small, its cosine does not vary much for different
eclipses, and we may in most cases employ its mean value. We
have, by observation,

Greatest values.

Least values.

Mean values.

AN

> G «
~

5° 20" 6"

61’ 32"

9

16 46

16 18
16.19

4° 57’ 22"

52' 50”

8

14 24

15 45
10.89

5° 8 44"

57 11

8.5

15 35

16 1
135

From the mean values of I and 2 we find the mean value of

sec I’ = 1.00472, and the condition (477) becomes
A< (r— 7 + 8+ &) X 1.00472

or

BLr—n 4848+ (r— + 84 &) X .00472

where the small fractional term varies between 20’/ and 30"
Taking its mean value, we have, with sufficient precision for all
but very unusual cases,

A< r—n" 48+ 84 25 » 78
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If in this formula we substitute the greatest values of =, s,
and ¢/, and the least value of =/, the limit

B <. 1° 34’ 53"

is the greatest limit of the moon’s latitude at the time of con-
junction, for which an eclipse can occur.

If in (478) we substitute the least values of =, s, and ¢/, and
the greatest value of #/, the limit

B < 1°28 15"

is the least limit of the moon’s latitude at the time of conjunc-
tion for which an eclipse can fail to occur.

Hence a solar eclipse is certain if at new moon 8 < 1° 23’ 15/,
tmpossible if 3>1° 34’ 53"/, and doubiful between these limits. For
the doubtful cases we must apply (478), or for greater precision
(477), using the actual values of =, 7/, s, &/, 2, and I for the date.

ExaMpLE.—On July 18, 1860, the conjunction of the moon
and sun in longitude occurs at 2* 19*.2 Greenwich mean time:
will an eclipse occur? We find at this time, from the Ephemeris,

8 =10°3318".6

which, being within the limit 1° 23’ 15/, renders an eclipse cer-
tain at this time.

Having thus found that an eclipse will be visible in some part
of the earth, we can proceed to the exact computation of the
phenomenon. The method here adopted is a modified form of
BesseL’s,* which is at once rigorous in theory and simple in
practice. For the sake of clearness, I shall develop it in a series
of problems.

Fundamental Equations of the Theory of Eclipses.

288. To investigate the condition of the beginning or ending of a solar
eclipse at a given place on the earth’s surface.—The observer sees the
limbs of the sun and moon in apparent contact when he is situated
in the surface of a cone which envelops and is in contact with
the two bodies. We may have two such cones:

* See Astr ische Nachrichten, Nos. 151, 152, and, for the full development of the
method with the utmost rigor, Bessxr's .4str ische Untersuchungen, Vol. II.
Haxsex's development, based upon the same fundamental equations, but theoreti-

cally less accurate, may also be consulted with advantage: it is given in Astronom.
Nach., Nos. 839-842.
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where the second members, besides the right ascensions and
declinations, involve only the quantity 4, which may be expressed
in terms of the parallaxes as follows:

Let

= = the moon’s equatorial horizontal parallax,
=’ = the sun’s “ “ “

then we have (Art. 89)
sin «/
sin «

p="_
===
If, farther,

7,= the sun’s mean horizontal parallax,

and 1/ is expressed in terms of the sun’s mean distance from the
earth, we have, as in (146),

. sin =,

gin 7 = 0

r’

and hence
— sin =,
rsinz

(480)

which is the most convenient form for computing b, because
and = are given in the Ephemeris, and =, is a constant.

290. The equations (479) are rigorously exact, but as b is only
about .y, and @ — a’ at the time of an eclipse cannot exceed
1° 43', @ — a’ is a small arc never exceeding 17’/, which may be
found by a brief approximative process with great precision.
The quotient of the first equation divided by the second gives

b cos 8 sec 8’ s8in (o — o)
1 —bcos ésecd’ cos (a — a')

tan (a — o) =

where the denominator differs from unity by the small quantity
b cos 8 sec 8’ cos (@ — a@’); and, since & and ¢’ are nearly equal,
this small difference may be put equal to b, and we may then
write the formula thus:*

a—a =—

b ; cos & sec 8’ (a — a')

* Developing the formula for tan (a — a’) in series, we have
4 o' _ beosdsecd’sin (a—a’) 82 cost d sect 8’sin 2 (a — o)
8in 1”7 2 8in 1”

where the second term cannot exceed 0”.04, and the third term is altogether inap-

— &o.
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If we take cos (@ — a’) =1 and cos (@ — a’) =1, we have,
from the second and third of (479),

g cos d = cos 8’ — b cos 8
g sin d = 8in 8’ — b gin 9
whence
gsin(d —38") = — bsin (8 — &)
geos(d—3)=1—bcos (3 — 4"

from which follows

tan (d — 8"y = — bsin (8 — 8"

1—bcos (s —é"

or, nearly,*
b

d—¥0=———(—2¢

T3¢ )

From the above we also have, with sufficient precision for the
subsequent application of g, the formula

g=1—b

The formule which determine the point Z, together with the
quantity G, will, therefore, be

a=d — b bcosasecd’(a—a')
b (481)
d=¢8 ——— (=29
13 ¢ )

and in many cases it will suffice to take the extremely simple

forms ,
a:a’-—-b(u—u’) d=28—b(s—19¢)

291. To find the distance of a given place of observation from the
axis of the shadow at a given time.—Let the positions of the sun,

preciable. The formula adopted in the text is the same as

a—a'=—bcosdsecd'({a—a)(l—25)"
== — b cos d sec 8’ (a—a') — b? cos d sec 4’ (a—a') — &ec.

which, since cos ¢ sec ' may in the second term be put equal to unity, differs from
the complete series only by terms of the third order. The error of the approximate
formula is, therefore, something less than 0”.01.

* The crror of this formula, as can be easily shown, will never exceed 0.088.
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we have

p—a=p—uw
To find g, we have only to convert the Greenwich mean time 7'
into sidereal time and to subtract a.

By means of the formule (482) and (483) the co-ordinates of
the moon and of the place of observation can be accurately com-
puted for any given time. Now, the co-ordinates z and y of the
moon are also those of every point of the axis of the shadow: so
that if we put

4 = the distance of the place of observation from the axis
of the shadow,

we have, evidently,

P=@E—-+@G—2) (484)
[The co-ordinates z and { have also been found, as they will be
required hereafter.]

292. The distance 4 may be determined under another form,
which we shall hereafter find useful. Let M/, Fig. 42.
Fig. 42, be the apparent position of the moon’s z
centre in the celestial sphere as seen from the
place of observation; P the north pole; Z the
point where the axis of the cone of shadow
meets the sphere, as in Fig. 41; M|, C, the
projections of the moon’s centre and of the oy
place of observation on the principal plane.

The distance C M, is equal to 4, and is the
projection of the line joining the place of x
observation and the moon’s centre. The plane by which this
line is projected contains the axis of the cone of shadow, and
its intersection with the celestial sphere is, therefore, a great
circle which passes through Z, and of which ZM' is a portion.
Hence it follows that C\M, makes the same angle with the axis
of y that M’Z makes with PZ: so that if we draw C,.NV and M| N
parallel to the axes of y and z respectively, and put

Q= PZM' = NC,M,
we have, from the right triangle C,M,N,

48in Q=x—¢&
dcos @Q=y—y } (485)

the sum of the squares of which gives again the formula (484).

o,
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293. To find the radius of the shadow on the principal plane, or on
any given plane parallel to the principal plane.—This radius is evi-
dently equal to the distance of the vertex of the cone of shadow
from the given plane, multiplied by the tangent of the angle of
the cone. In Figs. 839 and 40, p. 440, let EF be the radius of
the shadow on the principal plane, CD the radius on a parallel
plane drawn through C. Let

H = the apparent semidiameter of the sun at its mean dis-
tance,
k = the ratio of the moon’s radius to the earth’s equatorial
radius,
f = the angle of the cone = EVF,
¢ = the distance of the vertex of the cone above the princi-
pal plane = VF, .
¢ = the distance of the given parallel plane above the prin-
cipal plane = DF,
! = the radius of the shadow on the principal plane — EF,
L = theradius of the shadow on the parallel plane = CD.

If the mean distance of the sun from the earth is taken as

unity, we have
the earth’s radius = sin =,

the moon’s radius = ksinn,— MB,
the sun’s radius, =sin H = S4,

and, remembering that G = r’g found by (481) is the distance
MS, we easily deduce from the figures

sin H + k sin =,

sin f =
f re

(436)
in which the upper sign corresponds to the penumbral and the
lower to the umbral cone.

The numerator of this expression involves only constant quan-
tities. According to Bessen, H = 959.788; Excke found
n, = 8/7.57116; and the value of %, found by BurcknarDpT from
eclipses and occultations, is k£ = 0.27227 ;* whence we have

log [sin H - k sin n,] = 7.6688033 for exterior contacts,
log [sin H — k sin z,] = 7.6666913 for interior contacts.

* The value of k¥ here adopted is precisely that which the more recent investigs-
tion of OupEMANs (Astron. Nach., Vol. LL. p. 80) gives for eclipses of the sun
For occultations, a slightly increased value seems to be required.
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may be taken as the conditions which determine the beginning
or ending of an eclipse at a given place.

The equation (490), which is only expressed in a different form
by (491), is to be regarded as the fundamental equation of the
theory of eclipses.

295. By Art. 292, so long as 4 is regarded as a positive quan-
tity, ¢ is the position angle of the moon’s centre at the point Z;
and since the arc joining the point Z and the centre of the moon
also passes through the centre of the sun, ¢ is the common
position angle of both bodies. '

Again, since in the case of a contact of the limbs the are
joining the centres passecs through the point of contact, @
will also be the position angle of this point when all three
points—sun’s centre, moon’s centre, and point of contact—lie
on the same side of Z. In the case of total eclipse, however,
the point of contact and the moon’s centre evidently lie on
opposite sides of the point Z; and if [ — i in (490) were a
positive quantity, the angle @ which would satisfy these equa-
tions would still be the position angle of the moon’s centre, but
would differ 180° from the position angle of the point of con-
tact. But, since we shall preserve the negative sign of | —i{
for total eclipse (Art. 298), (and thereby give @ values which
differ 180° from those which follow from a positive value), the
angle Q will in all cases be the position angle of the point of contact.

296. The quantities a, d, z, y, [, and ¢ may be computed by
the formule (480), (481), (482), (486), (487), (488), for any given
time at the first meridian, since they are all independent of the
place of observation. In order to facilitate the application of
the equations (490) and (491), it is therefore expedient to com-
pute these general quantities for several equidistant instants
preceding and following the time of conjunction of the sun and
moon, and to arrange them in tables from which their values
for any time may be readily found by interpolation.

The quantities  and y do not vary uniformly; and in order to
obtain their values with ac¢uracy from the tables for any time,
we should employ the second and even the third differences in
the interpolation. This is eftected in the most simple manner
by the following process. Let the times for which x and y have
been computed be demoted by T, — 2%, T, — 1%, T, T, + 14
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T, + 2, the interval being one hour of mean time; and let the
values of z and y for these times be denoted by x_,, z_,, &c.,
Y—2 Y—1, &c. Let the mean hourly changes of z and y from the
epoch T to any time T'= T, + r be denoted by 2’ and y’. Then
the values of =’ and y’ for the instants 7, — 2%, T, — 1*, &c. will
be formed as in the following scheme, where ¢ denotes the third
difference of the values of x as found from the series z_,, x_,, &c.
according to the form in Art. 69, and the difference for the
instant 7; is found by the first formula of (77). The form for
computing y’ is the same.

Time. z z

T,—2* T_, 1 (xg—x_y)

T,—1* x_, To— Ty
To T, 5(11—1:-!)_&0
T,+ 1* T T, — '

To + 2 Ty i (1’, - xo)

If then we require = and y for a time T = T, 4 r, we take
z’ and ¥’ from the table for this time, and we have

r=1x,+ x'r
Y=Yty

297. ExaMpLE.—Compute the elements of the solar eclipse of
July 18, 1860. ‘

The mean Greenwich time of conjunction of the sun and
moon in right ascension is July 18, 2* 8 56'. The computation
of the elements will therefore be made for the Greenwich hours
0,1, 2 3, 4, and 5. For these hours we take the following
quantities from the American Ephemeris:

For the Moon.

Greenwich mean P
time.

July 18, 0* 116° 44’ 24”.30 21° 52' 20"”.3 59’ 45".80

1 117 21 59 .10 42 32 8 47 .13
2 117 59 30 .45 32 36 4 48 44
3 118 36 58 .35 22 81 .2 49 .72
4 119 14 22 65 12 17 .2 50 .98
5 119 51 43 .35 154 .6 52 .22
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For the Sun.

Greenwich mean ' &

time. log ¥

July 18, 0* 117° 59’ 417.85 | 20° 57’ 56".20 0.0069675

1 118 2 12 .50 57 29 42 61
2 118 4 43 .14 57 2 .60 47
3 118 7 138 .77 56 35 .75 33
4 | 118 9 44 .39 56 8 .86 19
5 118 12 15 .00 65 41 .94 05

The formulse to be employed will be here recapitulated, for
convenient reference.

I. For the elements of the point Z :
‘ sin o

b=

=— log sin =, = 5.61894
rsinw

a=m’—1 b bcos&secb’(a—u’) or,nearly, a =od —b(a—4¢)

d=8— " @— ) « d=3—b@—10)

II. The moon’s co-ordinates :

1
r= -
sin «
z =r cos 3 8in (a — @)
y = r sin (3 — d) cos* } (s — @) + r 8in (3 4 d) sin*{ (s — @)
z =r cos (8 — d) cos’}(a — a) —r cos (8 + d) sin* } (a — a)

TIL. The angle of the cone of shadow and the radius of the
shadow :

For penumbra: or exterior contacts. For umbra: or interior contacts
gin f = [7.668803] in f — [7.666691]
r'y r'y
k k
c=24 — logk=9435000, ¢c=2— —
sin f sin f

i=tanf i—tanf
l=1ic l=1c
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IV. The values of a, d, x, y, log i, and [, will then be tabulated
and the differences z’ and y’ formed according to Art. 296.
I give the computation for the three hours 1%, 2) and 3%

in extenso.

I. Elements of the point Z;

1s 2 R
a — a'|—0° 40’ 18”.40(—0° b5’ 12".69(}-0° 29’ 44”.58
d—d|4+ 45 8 .38+ 85 83 .80+ 25 565 .45
log coseo 7 — log r | 1.7696999 | 1.7695414 | 1.7693865
ar. co. log /| 9.9930339 9.9930353 9.9930867
Constant log sm | 5.61804
(1 7.87167 7.871562 7.37136
(2; ar. co. log (1 — d) 0.001023 0.001023 0.001022
log cos 9.96805 9.968556 9.969056
log sec &'/ 0.02978 0.02970 0.02968
log (o — a’)| n3.38263 n2.49511 8.256164
log (6 — @) 0.76310 9.86690 n0.62265
¢ —a' |4 6".66|+ 0".73|— 4".19
1) + (2 7.87269 7.87254 7.87288
log (4 — d°)f 8.43191 8.32916 8.19185
log Ed — d’)| n0.80460 n0.70169 n0.56423
d—4d' |-~ 6".88({ — 6".08| — 8".67
a|118° 2'18".16{118° 4’ 43".87/118° 7' 9".568
d| 20 567 23 .04| 20 56 567 .57 20 56 32 .08
log (1 —b) =logg| 9.988977 0.998977 9.998978
II. Co-ordinates z, y, and z.
a — a|—0° 40’ 19”.06|]—0° 5’ 18”.42|4-0° 29’ 48".77
éd—d 45 9 .76(+ 85 88 .83|4 25 69 .12
d4di 42 39 b5 .84] 42 29 83 .97 42 19 3 .28
log sin (a — a() n8.0692116 n7.1817014 7.9881239
log cos 9.9680502 9.9685481 9.9690490
log r cos ¢ sin (a — a) = log z| n9.7969617 n8.9097909 9.6665594
z|—0.626559 —0.081244 0.464044
log cos’}(a—a)| 9.9999850 | 9.0999998 | 9.9999920
log sin (6 —d)| 8.1184932 8.0157434 7.8784502
log (8) =logrsin (4 —d)cos'} ?u— aé 9.8781781 9.7762846 9.6878287
log sin?} (a —a)| b5.5363780 8.7618394 5.2741910
log sin (d +d)| 9.8310485 9.8296235 9.82816956
log (4) =logrsin (6 +d) sinq&.—a; 7.1271264 | 5.3405048 | 6.8617470
3)|4-0.755402  |4-0.696058  |--0.434329
4)|40.001340  |4-0.000022 +0.000727
(8) + (4) y |+0.756742  |4+0.5960756  |-4-0.435056
log cos gd—- 9.9999625 9.9999766 9.9999876
log (5) =logrcos (6 —d)cos?} (a—a)| 1.75696474 | 1.7695178 | 1.7593661
log cos (d+ 9.8664780 9.8676822 9.8688939
log (6) =logr cos (& + d)sin?} éa— 7.162565H9 5.8885630 6.9024714
log [(5) — (6)] = logz| 1.7596364 | 1.7695176 | 1.7508601
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III. Log i and [, for exterior contacts. [Constant log = 7.668803]

log r'g
Const. — log r’g = log sin f
log sec f
log k cosec f
log [z + k& cosec f] = log ¢
log tan f =log i
log ic =log !
14

p L] ] ]
0.005943 0.006942 0.005941
7.662860 7.662861 7.662862
0.0000056
1.772140 1.772139 1.772138
2.066963 2.066904 2.066826
7.6628065 7.662866 7.662867
9.729828 9.729770 9.729693
0.5636819 0.536747, 0.536652

Log i and [ for interior contacts. [Constant log = 7.666691]

Const. — log r'g — log sin f| 7.660748
log sec f| 0.000005

log k cosec f

1.774252

log [z — & cosec /] = log ¢ | n0.293986

log tan f =logi| 7.660753
log fc = log I | n7.954738
1 [—0.009010

7.660749 7.660750
1.774261 1.774250
n0.297413 n0.301919
7.660764 7.660755
n7.958167 n7.962674
—0.009082 —0.009176

IV. The computation being made for the other hours in the
same manner, the results are collected in the following tables.

Exterfor Contacts. Interior Contacts.
a d
1] log ¢ ] log¢
0% | 117° 59 52".44 | 20° 57* 487,50 | 0.586867 | 7.662864 |— 0.008960 7.660752
1 |118 218.16 57 23 .04 | 0.536819 .65 | 0.009010 58
2 4 43 .87 66 57 .67 | 0.536747 66 | 0.009082 b4
3 7 9.58 56 82 .08 | 0.586652 67 | 0.009176 65
4 9 85 .27 56 6 .58 | 0.536533 68 | 0.009203 56
5 12 0.9 55 41 .06 | 0.636391 69 | 0.009434| 57
= a, a |8, y - a, a | a
0| —1.171856 |+ 0.917040
1| —o626550 | T0846297 |\ qg  IIL 0766742(— 01602381 ge9l .
; 0.545316 —46)] — 0.160667 +
2 | —0.081244 0 — 927 |1 0.596075! —862( T,
3 v 0.54-)288 - —60 | — 0-161019 _m +
+ 0.464044 288 | 87| rl\+0.485066
0.545201 —75) o onog|— 0.161852( ¢ ol 4
4 | 4 1.009245 0c4n00 |—162 4-0.278704| — o aeetl—8
5 | 4 1.554284 - I4+0.112089|—

For the values of the hourly differences of z and y, we find

from the above, by Art. 296,
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t4 log =’ y log y'
0* | 0.545306 9.736640 —0.160483 | 79.205429
1 0.545315 648 — 0.160667 5927
T,=2 0.545310 644 — 0.160846 6410
3 0.545288 626 —0.161019 6877
4 | 0.545245 592 —0.161186 7327
5 | 0.545176 537 — 0.161345 7756

and for any given time 7'= T, + r, we have

z = — 0081244 4 7= } (492)
y = + 0.596075 + y'r -

Finally, to facilitate the computation of the hour angle
g — a=p — o (Art. 201), we prepare the values of p, for each
of the Greenwich hours. Thus, for 7"= 1*, we have

From the Ephemeris, July 18, 1860,

Sid. time at mean noon = T* 46~ 4:.03
Sid. equivalent of 1 meant. = 1 0 9 .86
Greenwich sid. time = 8 46 13 .89

“ “ « inare, =131° 33 28".35

; a =118 2 18.16
m= 13 31 10.19

Thus we form the following table, to which is also added for
future use the value of the logarithm of

# = the hourly difference of y, in parts of the radius;

. log p' = log 54002".15 sin 1”
ho Hoarly 4if = 9.417986

0* | 358° 31' 8.0
13 31 10 .2
28 31 12 .3 | 54002".15
43 31 14 4
58 31 16 .6
73 31 18 .7

Qv e WO D =

I proceed to consider the principal problems relating to the
general prediction of eclipses, in which the preceding results
will be applied.
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Outline of the Shadow on the Surface of the Earth.

298. To find the outline of the moon's shadow upon the earth at a
given time.—This outline is the intersection of the cone of shadow
with the earth’s surface; or, it is the curve on the surface of the
earth from every point of which a contact of the sun’s and
moon’s limbs may be observed at the given time. Let

T = the given time reckoned at the first meridian,

and let @, d, z, y, [, and log ¢ be taken from the general tables
of the eclipse for this time. Then the co-ordinates £, 3, { of any
place at which a contact may be observed at the given time must
satisfy the conditions (491),

. —i)sinQ=x—¢ ' } 493
: (I—i)cosQ@=y—7 (493)
Let

8 = the hour angle of the point Z,

w = the west longitude of the place;

then we have
b=p—a=p —o

and the equations (483) become

& —=pcos ¢'sin g
. p=psin ¢’cosd — p cos ¢ sin d cos & } 4%
= p sin ¢'8in d 4 p cos ¢’ cos d cos &

The five equations in (493) and (494) involve the six variables
§ 9 C ¢, 9, and Q, any one of which may be assumed arbi-
trarily (excluding, of course, assumed values that give impossible
or imaginary results); then for each assumed value of the arbi-
trary quantity we shall have five equations, which fully deter-
mine five unknown quantities, and thereby one point of the re-
quired curve. I shall take @ as the arbitrary variable.

In the present form of the equations (494), they involve the
unknown quantity p, which being dependent upon ¢’ cannot be
determined until the latter is found. This seems to involve the
necessity of at first neglecting the compression of the earth, by
putting p = 1, and after an approximate value of ¢’ has been
found, and thereby also the value of p, repeating the computation.
But, by a simple transformation given by BEsskL, this double
computation is rendered unnecessary, and the compression of
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the earth is taken into account from the beginning. If ¢ is the
geographical latitude, we have (Art. 82)

008 o — cos ¢ sin o’ — 8in ¢ (1 — ee)
P ?_I/(I—eesin’y) P ,—V(l—ee sin? ¢)
in which
log ee = 7.824409 log /(1 — ee) = 9.9985458

If we take a new variable ¢,, such that

cos ¢

V(1 — ee 8in? ¢)

8in ¢1/(1 — ee)

V(1 — ee sin? ¢)
cos ¢, = p cos ¢/

V(1 — ee) sin ¢, = p sin ¢’

_tang,

VvV (1—ee)

Hence the equations (494) become

CO8 ¢, ==
we shall have

sin ¢, = /(1 — cos? ¢)) =
or

tan ¢ =

§ =cos g 8in 8
7 = 8in ¢, cos d /(1 — e€) — cos ¢, sin d cos ¥
¢ =+sin ¢, 8in d }/(1 — ec) + cos ¢, cos d cos &

Put
p, 8in d, = sin d Py 8in d, = sin d /(1 — e¢) } 495
p, cos d, = cos d /(1 —ee) py co8d, = cos d (495)

The quantities p,, d,, p,, d;, may be computed for the same times
as the other quantities in the tables of the eclipse, and hence
obtained by interpolation for the given time. The factors
p, and p, will be sensibly constant for the whole eclipse. We
now have

§ =cos ¢ 8in 8

7 = p, 8in ¢, cos d, — p, cos ¢, sin d, cos &

{ = p, 8in ¢, cos d, + p, cos ¢, cosd, cos &
Let us put

N = 7

Py
and assume {,, so that

&4 er=1 (496)
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or, which is equivalent, let us take the system
§ = cos ¢, 8in 8
7, = 8in @, cos d, — cos ¢, sin d, cos 3 (497)
¢, =8in ¢, sin d, 4 cos ¢, cos d, cos 8

The quantity {, differs so little from 7 that we may in practice
substitute one for the other in the small term i7; but if theo-
retical accuracy is desired we can readily find 7 when 7 is
known ; for the second and third of (497) give

cos«yle?sa = — vy, sin d, 4+ 7, cos d,
8in ¢, = 7 cosd, 4 % sin d,

which substituted in the value of £ give
¢=p,%, cos(d, — d,) — p, 7, sin (d, — d,) (496)

Our problem now takes the following form. We have first
the three equations

(—i)sinQ=z—¢
(—if)cos@=y —p } (499)
£t g=1

“which for each assumed value of @ determine &, 7,, and Z,. Then
we have

cos g 8ind = &
cos ¢, cos ¢ = — 5, 8in d, 4 {, cos d, (500)
sing,= 7, cos d + ¢ sind,

which determine ¢, and 4. Then the latitude and longitude of
a point of the required outline are found by the equations

tan ¢,

V(1 —ee)
To solve (499), let 3 and y be found by the equations

tan¢= w=ﬂl—ﬂ (501)

sin Asiny =z —IlsinQ=a

_ Yy lcos@ (502)

then we have
& =sin g sin y 4 i7,;8in Q
n, = sin B cos y + i, cos @
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where we have omitted p, as a divisor of the small term ¢, cos @,
since we have very nearly p, = 1. Substituting these values in
the last equation of (499), we find

{?=cos’f — 2i{ 8in fcos (@ —7) = (N

Neglecting the terms involving @ as practically insensible, this

gives
‘ §,= =% [cos p — isin S cos (@ — )]

In order to remove the ambiguity of the double sign, let us put
Z = the zenith distance of the point Z (Art. 289);
fhen, since ¢ = u — a is the hour angle of this point, we have
co8 Z = 8in ¢ 8in d 4 cos ¢ cos d cos &

which by means of the preceding equations is reduced to

8in ¢

co8 Z ={¢,p, (503)

sin ¢,

Hence cos Z and ¢, have the same sign.

But, in order that the eclipse may be wisible from a point on
the earth’s surface, we must, in general, have Z less than 90°;
that is, cos Z must be positive, and therefore £, must be taken
only with the positive sign. The negative sign would give a
second point on the surface of the earth from which, if the earth
were not opaque, the same phase of the eclipse would also be
observed at the given time. In fact, every element of the cone
of shadow which intersects the earth’s surface at all, intersects
it in two points, and our solution gives both points.

If weput 008 (Q—7)

tcos(Q—y
we have
¢,=cos 8 — sin A 8in ¢

or, with sufficient accuracy,
g,=cos (B +¢) (505)

Thus, 8 and y being determined by (502), £, is determined by
(504) and (505) : hence also § and 7, by the equations

§ =a+ ifsinQ
7, =0b + 5, co8 Q }(506)
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The problem is, therefore, fully resolved ; but, for the conve-
nience of logarithmic computation, let ¢ and C be determined

by the equations
csin C =1,

ccosC={, }(507)

then the equations (500) become

cos ¢ 8in 8 = &

€08 ¢, c08 8 = ¢ cos (C + d)) }(508)
sin ¢, = ¢ 8in (C + d))

The curve thus determined will be the intersection of the

penumbral cone, or that of the umbral cone, with the earth’s

surface, according as we employ the value of ! for the one or the
other.

299. The above solution is direct, though theoretically but
approximate, since we have neglected terms of the order of i%
It can, however, readily be made quite exact as follows. We
have, by substituting the values of ¢, and », in (498), and neg-
lecting the term involving the product ¢ sin(d,— d,), which is
of the same order as 1%,

¢ =p,co8 (8 + ¢) — p,sin B cos y sin (d, — d,)

and, putting
’ ¢ = (d,—d,) cosy

we have, within terms of the order ¢?,

C=p,c08(B+ ¢+ ¢) (509)

The substitution of this value of ¢ in the term i{ involves only
an error of the order ¢ which is altogether insensible. The
exact solution of the problem is, therefore, as follows. Find 2
and y for each assumed value of @, by the equations

sin 8siny =2 —1Is8inQ =a

y_ lcos@Q b
£ P,

sin f cosy =

then ¢ and ¢’ by the equations

c__:icos(Q—r)

sin 1” ¢=(d,—d)cosy
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Find 3 and y by the equations

sin 8'sin Y = a 4 ip,co8 (3 + ¢ + &) 8in Q = ¢
. tpyco8 (8 + ¢ 4 ¢') cosQ
r=15b+ . =7

3 ’
sin 8’ cos \

then we have, rigorously,

¢, = cos 8’
and these values of £, 7, and £, may then be substituted in (500),
which can be adapted for logarithmic computation as before.*

300. It remains to be determined whether the eclipse is begin-
ning or ending at the places thus found. A point on the earth’s
surface which at a given time T is upon the surface of the cone
of shadow will at the next consecutive instant 7'+ dT be
within or without the cone according as the eclipse is beginning or
ehding at the time T'; the former or the latter, according as the
distance 4 =/[(x —§)*+ (y — %)*] becomes at the time T' + dT
less or greater than the radius of the shadow [ — iZ. In the case
of total eclipse [ — i{ is a negative quantity, but by comparing
4? with (I — i{)* we shall obtain the required criterion for all
cases; and, therefore, the criterion of beginning or ending, either
of partial or of total eclipse, will be the negative or positive value
of the difterential coeflicient, relatively to the time, of the
quantity

=&+ @G —n'—E—idy
or the negative or positive value of the quantity

ir ) ( A N Y
— = — L =) = —1 =
= E)(dT ar) T2\ p dT) G\~ 1ty

* In this problem, as well as in most of the subsequent ones, I have not followed
BrsserL’'s methods of solution, which, being mathematically rigorous, though as
simple as such methods can possibly be, are too laborious for the practical purposes
of mere prediction. As a refined and exhaustive disquisition upon the whole theory,
BesszL’s Analyse der Finsternisse, in his Astronomische Untersuchungen, stands alone.
On the other hand, the approximate solutions heretofore in common use are mostly
quite imperfect; the compression of the earth, as well as the augmentation of the
moon’s semidiameter, being neglected, or only taken into account by repeating the
whole computation, which renders them as laborious as a rigorous and direct method.
I have endeavored to remedy this, by so arranging the successive approximations,
when these are necessary, that only a small part of the whole computation is to be
repeated, and by taking the compression of the earth into account, in all cases, from
the commencement of the computation. In this manner, even the first approxima-
tions by my method are rendered more accurate than the common methods,
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where we omit the insensible variation of i. For brevity, let us

dr
’
write z/, y’, &c. for—; T dT’
by P; then, after substituting the values of £t —§ =(l —¢Z) sin @,
y— 5= (—i) cos @, we have

&c. and denote the above quantity

P=L[@—¢&)sinQ+ (¥ —1)cos @ — (I'— it)]
in which L=1—1ig. If we put
P=(x—¢&)8inQ 4 (¥Yy —5)cos @ — (I'—1%) (510)

we shall have
P=LP

The quantity P will be positive or negative according as L and
P’ have like signs or different signs.

For exterior contacts, and for interior contacts in annular
eclipse, L is positive (Art. 293), and hence for these cases the eclipse
is beginning or ending according as P’ is negative or positive ; but for
total eclipse, L being negative, we have beginning or ending
according as P’ is positive or negalive.

‘We must now develop the quantity P’/. Taking one hour as
the unit of time, 2/, y’, I/, §’, %/, ¢’, will denote the hourly changes
of the several quantities. The first three of these may be
derived from the general tables of the eclipse for the given time;
but §’, ¥/, ¢’ are obtained by differentiating the equations (494),
in which the latitude and longitude of the point on the earth’s
surface are to be taken as constant. Since # = p,— w, we shall

19 d, .
have —Z;T = _dLIl’; and hence, putting
7= gi;snn 1” d'= g‘% gin 1”7
we find

§'=p'p cos ¢'cos 8 = ' (— n sind + ¢ cos d)
=pu[—ysind 4+ Zcosd + (I — i) sin d cos Q]
7 =p&sind —d'Z
=pu[rsind —({ —1i7)sindsin Q] —d'C
{'=—,'&cosd 4 d'y
=u'[—xcosd 4 (! —iZ)cosdsin@Q] 4 d'[y — (I —i%) cos Q]
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Substituting these values in (510), and neglecting terms involving
i* and id’ as insensible, we have

P—=a —bcos @+ sinQ — ¢ (x cosdsinQ — d’cos Q)

in which a’, %', and ¢/, denote the following quantities:

a=—1U —uircosd '
V=—y+ dxsind }(511)
= o+ pysind 4 pilcosd
The values of these quantities may be computed for the same
times as the other quantities in the eclipse tables, and their
values for any given time will then be readily found by interpo-
lation. For any assumed value of ¢, therefore, and with the
value of ¢ found by (509), the value of P’/ may be computed, and
its sign will determine whether the eclipse is beginning or
ending. In most cases, a mere inspection of the tabulated values
of a/, ¥, and ¢/, combined with a consideration of the value of
@, will suffice to determine the sign of P’; but when the place
is near the northern or southern limits of the shadow, an accu-
rate computation of P’ will be necessary; and, since other appli-
cations of this quantity will be made hereafter, it will be proper

to give it a more convenient form for logarithmic computation.

Put
esin E=1V fsin F=4d' }
ecos E=¢ fcosF =y cosd (512)
then we have

P'=a'+} esin (@ — E) —{fsin (@ — F) (513)

Since a’ and F are both very small quantities, and a very precise
computation of P’ will seldom be necessary when its algebraic
sign is alone required, it will be sufficient in most cases to neglect
these quantities, and also to put ¢, for ¢, and then we shall have
the following simple criterion for the case of partial or annular
eclipse :

If esin (Q — E) < £, fsin @, the eclipse is beginning.

If esin (@ — E) > ¢, f sin @, the eclipse is ending.
For total eclipse, reverse these conditions.

801. In order to facilitate the application of the preceding as

well as the subsequent problems, it is expedient to prepare the

values of d,, log p,, d,, log p,, a’, V', ¢/, ¢, E, f, F, and to arrange
them in tables.
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For our example of the eclipse of July 18, 1860, with the
values of d given on p. 454, we form the following table by the

equations (495):

d, log p, dy log p,
0* | 21° 1’ 39”.5 | 9.9987324 20° 53’ 58”.0 | 9.9998143
1 114.0 23 53 32 .6 45
2 0 48 .5 22 58 7.3 46
3 0229 21 52 41 .8 47
4 20 59 57 4 20 52 16 .4 48
5 59 31 8 19 51 50 .9 50

The values of z/, y’, and U, required in (511), derived also from
the eclipse tables on p. 454, by the method of Art. 75, are as

follows :
z vy 14
0* | + 0.545277 | — 0.160108 | — 0.000038
1 5312 0486 061
2 5310 0846 084
3 5256 1188 107
4 5134 1512 130
5 4928 1818 154

Hence, by (511) we find the values of a’, ¥/, © to be as follows.
The values for interior contacts are seldom required.

For exterior contacts. Yor interior contacts.

a' b 4 a [ 4 ¢
0 |4 0.001856/4- 0.050842|4- 0.631779(|+ 0.001850|+ 0.050842(+ 0.6811
1 -+ 0.000766/ 4 0.101816,4- 0.616776||4 0.000762(4 0.101816|-}- 0.6161
2 |4 0.000176!4 0.153241/4- 0.601711!|+ 0.000175|+ 0.158241|+ 0.601
3 |— 0.000415|4 0.204612(4- 0.586571]|— 0.000418|+ 0.204612]- 0.58506
4 — 0.001005|4- 0.255925 + 0.571342!|— 0.001000|+ 0.266925|-- 0.5
5 |— 0.001595/4 0.807171{4 0.556010;|— 0.001586|+- 0.807171|+

The values of e, E, f, F, for exterior contacts, deduced from
thege values of 4’ and ¢/, and from d’ = — 25’".5 sin 1"/, by (512),

are as follows:
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E log e F log f
o> 4° 33’ 21”7 9.801939 — 0° 1’ 44" 9.388244
1 9 22 25 795965 ¢ 264
2 14 17 17 793034 « 285
3 19 13 48 793255 « 305
4 24 7 46 .796604 “ 326
5 28 55 7 +.802923 “ 347

802. To illustrate the preceding formule, let us find some
points of the outline of the penumbra on the earth’s surface at
the time 7'= 2* 8 12', For this time, we have

x = — 0.00672 log p, = 9.99873 log i = 7.66287
y = 4 0.57409 d,=20° O 45"
I = + 0.53673 #,=380 84 13
Let us find the points for @ = 50° and @ = 300°. The com-
putation may be arranged as follows:
Q 50° 800°
By (502): a =gin fsiny | —0.41788 -+ 0.45815
b =sin B cosy | 4 0.22975 4 0.30662
r | —61°11'52" 56°12' 27"
: 8 28 28 52 33 27 20
Hence by (504): € — 543 — 659
B+e 28 23 9 33 20 21
By (505): log ¢, = log cos (8 + ¢) 9.94437 9.92191
%, 8in Q | -+ 0.00310 —0.00333
iZ,co8 Q | + 0.00260 -+ 0.00192
By (506): & [ —0.41478 + 0.45482
7 | 4+ 0.23235 + 0.30854
By (507): log 5, = log ¢ sin C 9.36614 9.48931
log ¢,=log c cos C 9.94437 9.92191
log ¢ 9.95901 9.94967
o 14° 47’ 39" 20° 16’ 12"
C+ 4, 35 48 24 41 16 57
By (508): log & = log cos ¢, sin s n9.61782 9.65784
log ¢ cos (C + d,)) = log cos ¢, cos § 9.86803 9.82558
"~ log tan ¢ n9.74979 9.83232
log cos ¢, 9.92764 9.90805
log ¢ sin (C + d)= log sin ¢, 9.72620 9.76906
% tan ¢, 9.79856 9.86101
log /(1 — ee) 9.99855 9.99855
log tan ¢ 9.80001 9.86246
9 | — 29° 20’ 20” 34°12'15”
p—%=w 59 54 33 856 21 58
? 32 1533 36 430

Vor. 1.—30
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To find whether the eclipse is beginning or ending at these
places, we have, from the table on p. 465, for 7'= 2* 8= 12,

log e 9.7981

E 14° 58

Q—E 8 2 285° 2

log e 8in (@ — E) 9.5521 n9.7780
log f 9.3883

log ¢, fsin Q 9.2170 n9.2477

At the first point, therefore, we have e sin (@ — E) > ¢, fsin @,
and the eclipse is ending. At the second point, we have
e sin(Q — E) < ¢, fsin @, and the eclipse is beginning.

Rising and Setting Limits.

803. To find the rising and setting limits of the eclipse.—By these
limits we mean the curves upon which are situated all those points
of the earth’s surface where the eclipse begins or ends with the
sun in the horizon. It will be quite sufficient for all practical
purposes to determine these limits by the condition that the
point Z is in the horizon. This gives in (508) cos Z=0, or
{,= 0, and, consequently, by (496), we have

e4gr=1 (514)
as the condition which the co-ordinates of the required points
must satisfy.

Now, let it be required to find the place where this equation

is satisfied at a given time T. Let z and y be taken for this
time, then we have, by putting £,= 0 in (499),

lsin Q=x—¢
lcosQ=y —19
Let
msin M =z psiny=E¢& }
mcos M =y pcosy =19 (519)

then, from the equations

lsin @ =msin M — psiny }(516)
lcos Q = m cos M — pcosy

we deduce, by adding their squares, ,
I'=m?— 2mp cos (M — y) + p?

P—(m — p)?

28in'3 (M —yp)=1—cos (M —7) = omp
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If then we put = M — 7, we have

sin}):i\/[(l+m—}2m(li—m+p)]

(617)
r=M+2

in which 31 may always be taken less than 90°, but the double
sign must be used to obtain the two points on the surface of
the earth which satisfy the conditions at the given time.

In this formula, m, M, and ! are accurately known for the
given time, but p is unknown. It is evident, however, from
(514) and (515), that we have nearly p =1, and this value may
be used in (517) for a first approximation. To obtain a more
correct value of 7, let us put § = sin y’; then, by (514), we have
%, = cos 7/, and, consequently, since 3= p, 7,

psiny =siny/

D cosy =p cosy
Hence we have

tan ;/=pltanr

__siny  pcosy (518)
" siny  cosy

and with this value of p the second computation of (517) will
give a very exact value of 7. 'With this second value of y a still
more correct value of p could be found; but the second approm-
mation is always sufficient.
With the second value of 7, therefore, we find the final value
of 7’ by the formula
tan /= p tan y

and then, substituting the values § =sin ¢/, 7, = cos ¢, £, = 0, in
(500), we have, for finding the latitude and longitude of the
required points, the formulse

cos ¢, 8in 8 =  sin ¢/
o8 ¢, o8 # = — cos ¢/ sin d,
sing = cos y cosd, 19)
O =p, — 8 tan ¢ = M—
' V(l—ee) _

In the second approximation, we must compute 2 and y by
(517) separately for each place.
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304. The sun is rising or setting at the given time at the
places thus determined, according as ¢ (which is the hour angle
of the point Z) is between 180° and 860° or between 0° and 180°.

To determine whether the eclipse is beginning or ending, we
may have recourse to the sign of P’ (513); and it will usually be
sufficient for the present problem to put both a’ and { =0 in
that e'xpresslon, and then the eclipse is beginning or ending
dccording as sin (Q E) is negative or positive. Now, by (516),
we find

~ Isin (Q — E) =msin (M — E) — psin (r — E)
Hence, for points in the rising or setting limits,

If. msin (M — E) < p sin (y — E), the eclipse is beginning,
~ If msin (M — E) > psin (y — E), the eclipse is ending.

305. In order to apply the preceding method of determining
the rising and setting limits, it is necessary first to find the
extreme times between which the time 7 is to be assumed, or
those limits of 7' between which the ‘solution is possible. The
two solutions given by (517).must reduce to a single one when
the surface of the cone of shadow has but a smgle point in
common with the earth’s surface,—i.e. in the case of tangency of
the cone and the terrestrial spheroid. Now, the two solutions
reduce to one only when 2 = 0, and both values of y become = M;
but if 2 = 0, the numerator of -the value of sin 34 must also be
zero; and hence the points of contaet are determined by the
conditions

l4+m—p=0  and  l—m+p=0
or by the conditions
m=b+l and m=p—1

There may be four cases of contact, two of exterior and two of
interior contact. The two exterior contacts are the first and last,
or the beginning and the end of the eclipse generally; the axis of the
shadow is then without the earth, and therefore we must have
for these casesm =1/ 22+ P =p + L

The first-interior contact corresponds to the last pomt on the
earth’s surface where the eclipse ends at sunrise; the second,
to the first point where it begins at sunset. DBut these interior
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contacts can occur only when the whole of the shadow on the
principal plane falls within the earth, and for these cases, there-
fore, we must have m = p — [.
For the beginning and end generally we have, therefore, by
(515),
(»+Dsin M=z
(Pt+hcos M=y

Let T be the time when these conditions are satisfied, and put
T—T,++

in which 7, is the epoch of the eclipse tables, for which the
values of z and y are z, and y,. Then, 2’ and y’ being the mean
hourly changes of z and y for the time 7}, we have

v :c=a,‘°-|-'r.'l:'
Puttine y="y4 +v
utiin
m, cos M, =y, ncos N=y

the above conditions become

(p +l)sin M=m,8in M, +r.ns8in NV
(p + 1) cos M=m,cos M, +r.ncos N
whence
(p + 1) sin (M — N)=m,sin (M,—N)
(p +1) co8 (M — N) =m, cos (M, —N) +nr
8o that, if we put M — N =+, we have

sin 4 = m, 8in (M, — N)

p+!
r=£:—lcos+—ﬂn‘lcos(Mo—N) (521)
T=T,+r~

in whicn cos 4 may be taken with either the negative or the
positive sign; and it is evident that the- first will give the
beginning and the second the end of the eclipse generally.

For the two interior contacts we have

m, sin (M, — N)
p—i - 29
p—1 ™ —
oY — cos(M‘ N)

sin.].:

T=
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These interior contacts cannot occur when p — ! is less than
my 8in (M, — N), which would give impossible values of sin 4.

In these formule we at first assume p = 1, and, after finding
an approximate value of 4, we have, by (517), in which =0,
v = M, and in the present problem M = N + «: therefore

r=N+4 (G))
with which p is found by (518), and the second computation of
(521) or (522) will then give the required times. We must
employ in (523) the two values of 4 found by taking cos 4 with
the positive and the negative sign ; and therefore different values
of p will be found for beginning and ending, so that in the
second approximation separate computations will be necessary
for the two cases.

In the first approximation the mean values of z’, ¥’, and |
may be used, or those for the middle of the eclipse. With the
approximate values of r thus found, the true values of z’, ¥,
and [ for the time 7= T, + r may be taken for the second
approximation.

After finding the corrected value of 4, we then have also the
true value of y = N + 4 for each point, and hence also the
true value of y’ by (518), with which the latitude and longitude
of the points will be computed by (519). For the local apparent
time of the phenomenon at each place we may take the value
of & in time, which is very nearly the sun’s hour angle.

806. When the interior contacts exist, the rising and setting
limits form two distinct enclosed curves on the earth’s surface.
If we denote the times of beginning and ending generally, de-
termined by (521), by 7| and T, and the times of interior con-
tact, determined by (522), by 7,/ and T/, a series of points on
the rising limit will be found by Art. 303, for a series of times
assumed between 7| and T}/, and points of the setting limit for
times assumed between 7}/ and 7.

‘When the interior contacts do not exist, the rising and setting
limits meet and form a single curve extending through the whole
eclipse. The form of this curve may be compared to that of the
figure 8 much distorted. A series of points upon it will be
found by assuming times between T} and 7.

807. ExaMpLE.—Let us find the rising and setting limits of
the eclipse of July 18, 1860.

1]
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For a second approximation, therefore, recomputing (521), we
now find

log sin ¢ n9.55316 n9.55269
log cos y n9.97032 9.97039
T 23*.9099 449587
200° 56’ 27" 339° 4’ 58"
N4 y=r 807 20 24 856 34 4
and by (518): log tany | n0.11626 1.10936

Then, for the latitude and longitude of the points, we have,
by (519),
d, 21° 1’ 41”7 20° 59’ 33"

p, | 357 10 2 72 54 8
8 | 254 38 52 91 35 43
m—8=o | 102 3110 | 341 18 25
e | 34 38 40 4 949

Therefore the eclipse begins on the earth generally on July 17,
23* 54™.6 Greenwich mean time, in west longitude 102° 31’ 10”
and latitude 34° 38’ 40/, and ends July 18, 4* 57".5 in longitude
341° 18’ 25’/ and latitude 4° 9’ 49",

It is evident that for practical purposes the firet approximation,
which gives the times within half a minute, is quite sufficient,
especially since the effect of refraction has not yet been taken
into account. (See Art. 327.)

Secondly.—We now pass to the computation of the curve which
contains all the points where the eclipse begins or ends at sun-
rise or sunset. In the present example, this curve extends
through the whole eclipse, since we have m, sin (M,— N)>1—1:
hence the required points will be found for Greenwich times
assumed between July 17, 28*.91 and July 18, 4%.96. Let us take
the series

T, 0 002, 004, 046, 0*8 . ....... 4.6, 448

The computation being carried on for all the points at once, the
regular progression of the corresponding numbers for the suc-
cessive times furnishes at each step.a verification of its correct-
ness. To illustrate the use of the formule, I give the computa-
tion for 7= 2*.0 nearly in full. For this time, we find, from
p- 454 and p. 464,

z=msin M= —008124 | =053675 d = 21°0 49"
y = mcos M = 4 0.59608 _ log p, = 9.99873
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SOLAR ECLIPSE, July 18, 1860.—RISING AND SETTING LIMITS.—(Continued.)

. ng. W. from Local
Greenwich Latitude. L&rgenwicl:’. App. Time.
Mean Time. ¢
@ 2
3+0 -+ 62° 43’ | 265° 37 9% 11=.6 | Ends at Sunset.
2 58 44 277 27 8 36 .3 “ ¢
4 54 42 286 49 8 10 .8 “ “
.6 50 35 294 47 7 51.0 ¢ «“
8 46 21 301 53 736 “ «
4.0 41 55 308 26 720 .3 o «
2 37 10 314 40 7 74 “ “
4 81 57 320 43 6 55 .2 “ “
.6 25 55 326 48 6 42 .9 “ “
8 18 11 333 18 6 28 .9 ¢« “

These points being projected upon a chart (see p. 504), the
whole curve may be accurately traced through them. It will be
seen that the method of assuming a series of equidistant times
gives more points in those portions of the curve where the
curvature is greatest than in other portions, thus facilitating the
accurate delineation of the curve. This advantage appears to
have been overlooked by those who have preferred methods
(such, for example, as HaNsEN’s) in which a series of equidistant
latitudes is assumed.

308. The preceding computations have been made for the
penumbra; but we may employ the same method to determine
the rising and setting limits of total or annular eclipse by
employing in the formule the value of ! for interior contacts.
These limits, however, embrace so small a portion of the earth’s
surface that they are practically of little interest.

Curve of Mazximum in the Horizon.

309. To find the curve on which the maximum of the eclipse is seen
at sunrise or sunset.—When a point of the earth’s surface whode
co-ordinates are §, 7, and ¢ is not on the surface of the cone of
shadow, but at a distance 4 from the axis of the cone, we have
the conditions (485),

48in Q=2 — &

dcosQ=y —1q } (524)



CURVE OF MAXIMUM IN THE HORIZON. 477
Hence, for any given time, the conditions (524) become

+dsin E=x —¢&
+dcos E=y —9

which with the condition
& + 3= 1

must determine the required points of our curve. The angle E
is here known for the given time, being directly obtained from
its tabulated values, but 4 is unknown. Putting, as in the
preceding problem,

mein M =x psiny =§&
mcos M=y pcosy =y

we have
+ 4sin E=msin M —psiny
+4cosE=mcos M — pcosy

whence
: 0=msgin (M — E) —psin (y — E)
+d4d=mcos (M — E)—pcos(y —E)

Therefore, putting 4 = y — E, we have
m sin (M — E)

P (527)
+4d=mcos (M —E)—pcos¢

sin § =

The first of these equations will give two values of 4}, since we
may take cos 4 with the positive or the negative sign; but, as
only those places satisfy the problem which are actually within
the shadow, we must have 4 < [, or, at least, 4 not greater than [.
That value of + which would give 4> ! must, therefore, be
-excluded : so that in general we shall have at a given time but
one solution.

It will be quite accurate enough, considering the degree of
precision above assigned, to employ in (627) a mean value of p,
or, since p falls between p, and unity, to take log p = }log p,.
But, if we wish a more correct value, we have only to take

y=4+ E (528)

and then find p as in (518); after which (527) must be recom-
puted.



478 SOLAR ECLIPSES.

Having found the true value of + by (527), and of y by (528),

we then have 7’ by the equation
tan y = p, tan y

and the latitude and longitude of each point of the curve by (519).

The limiting times between which the solution is possible will
be known from the computation of the rising and setting limits,
in which we have already employed the quantity m sin (M— E);
and the present curve will be computed only for those times for
which m sin (M — E) <l. These limiting times are also the same
as those for the northern and southern limiting curves, which
will be determined in Art. 813.

810. The degree of obscuration is usually expressed by the
fraction of the sun’s apparent diameter which is covered by the
moon’s disc. When the place is so far immersed in the penumbra
as to be on the edge of the total shadow, the obscuration is total ;
in this case the distance of the place from the edge of the
penumbra is equal to the absolute difference of the radii of the
penumbra and the umbra, that is, to the algebraic sum L+ L,
L, denoting the radius of the umbra (which is, by Art. 293,
negative); but in any other case the distance of the place within
the penumbra is L —4: hence, if D denotes the degree of
obscuration expressed as a fraction of the sun’s apparent
diameter, we shall have, very nearly,

_L—4

L+ L,
This formula may also be used when the eclipse is annular, in
which case L, is essentially positive; and even when 4 is zero,
and the eclipse consequently central, the value of D given by
the formula will be less than unity, as it should be, since in that
case there is no total obscuration.
~ In the present problem we have

(529)

l—4
D=—— 520%
I (520%)

in which [ and [, are the radii of the penumbra and umbra on
the principal plane, as found by (488).

ExampLe.—In the eclipse of July 18, 1860, compute the curve
on which the maximum of the eclipse is seen in the horizon.
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In the computation of the rising and setting limits, the
quantity m sin (M — E) was less than unity only from 7'= 0*.6
to T'= 4*.2: so that the present curve may be computed for the
series of times 0.6, 0*.8."....4%0, 4*2. For an approximate
computation we may take log » = }log p,= 9.9994, and employ
only four decimal places in the logarithms throughout.

The computation for T'= 2* is as follows. For this time we
have already found (p. 473)

log m 9.7793

M 852° 14'.4

E 14 173

Hence, by (527), M—E 337 57.1
log m sin (M — E) n9.3538
log p 9.9994
log sin 4 n9.3544

log cos § 9.9886

log p cos ¢ 9.9880
log m cos (M — E) 9.7463
mcos (M — E) -+ 0.5575
pecosy + 0.9727
4 0.4152

Here, if cos 4 were taken with the negative sign we should
find 4= 1.5302, which is greater than l. Taking it, therefore,
with the positive sign only, we have

¥ —13° 4'3
Y+ E=y + 1 13.
log p, = 9.9987 log tan y 8.3271
log tan y/ 8.3258
with which we find, by (519),
8 176° 37".2
,L, 28 31.2
0 211 54
¢ 69 1
App. time = 8 in time 11* 465
Sunset.

To express the degree of obscuration according to (529*) we
have, taking the mean values of [ and }; (p. 454),

Il = 0.5366 1— 4=0.1214
I, = — 0.0092 D— 0.1214 0
l+1= 05274 T 0.5274

In the same manner all the following results are obtained :
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For any given time 7, therefore, we are to find that point of
the outline of the shadow on the surface of the earth for which
the value of @ and its corresponding { satisfy this equation.
This can be effected only indirectly, or by successive approxima-
tions. For this purpose, we must know at the outset an approxi-
mate value of @; and therefore, before proceeding any further,
we must show how such an approximate value may be found.

We can readily determine sufficiently narrow limits between
which @ may be assumed. For this purpose, neglecting a’ in
(530), as well as F, which are always very small, we have,
approximately,

esin (@ — E) ={f sin Q

The extreme values of ¢ are { = 0 and { =1. The first gives
sin (@ — E) = 0, and therefore for a first limit we have

Q=E or Q=180° + E
The second gives
esin (@ — E) =fsin Q
whence
tan (Q — 1 B) =§—+—';tan§E
e —
Put
tan § = if tan } ¥
e—f
then the equation tan (Q — 3 E) = tan + gives for our second
limits
Q=1E++ or Q=180°+ }E + 4
To compute 4 readily, put

!
e

tan y =

then (531)

tan § = ten (45° 4 v) tan {4 E
and @ is to be assumed

between E and } E 4 ¢
or between 180° 4- E and 180° 4 ¢ £ + 4
Vor. L—-31
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These limits may be computed in advance for the principal
hours of the eclipse from the previously tabulated values of
E, ¢, and f, and an approximate value of @ may then be easily
inferred for a given time with sufficient precision for a first
approximation.

When the shadow passes wholly within the earth, there are
two limiting curves, northern and southern. For one of these
@ is to be taken between E and } E + ; for the other, between
180° + Eand 180° + } E 4 ). Since Eis always an acute angle,
positive or negative, it follows that when @ is taken between
E and } E + 4, its cosine is in general positive, while it is nega-
tive in the other case. The equation =y — (I — i) cos @
shows that » will be less in the first case and greater in the
second, and hence the values of Q beticeen E and } E + + belong
to the southern limit, and the values of Q between 180° 4 E and
180° + } E + + belong to the northern limit.

There is only one limit, northern or southern, when one of the
series of values of @ would give impossible values of { in the
computation of the outline of the shadow by Art. 298. But when
the rising and setting limits have been determined, the question
of the existence of one or hoth of the northern and southern
limits is already settled ; for if the rising and setting limits extend
through the whole eclipse in north latitude, only the southern
limiting curve of our present problem exists, and vice versa;
while if the rising and setting limits form two distinct curves,
we have both a northern and southern limiting curve; and the
latter must evidently connect the extreme northern and southern
points respectively of the two enclosed rising and setting curves.
In our example of the eclipse of July 18, 1860, there exists only
the southern limiting curve of the present problem, the penum-
bral shadow passing over and beyond the north pole of the earth.

ITaving assumed a value of @, we find £, by the equations (502),
(504) and (505), and then £ by (509). This computed value of {
and the assumed value of ¢ being substituted in (530), this equa-
tion will be satisfied only when the true value of @ has been
assumed. To find the correction of @, let us suppose that when
the equation has been computed logarithmically we find

log £ f8in (Q — F) —log [a' 4 e sin (@ — E)] ==

If then d @ and d{ are the corrections which @ and 7 require in
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order to reduce x to zero, we have, by differentiating this equation,

ecos (Q— E ]d_Q_+ic_
a +esin(@Q—E)] 4 AL
in which 4 is the reciprocal of the modulus of common logarithms.
In this differential equation we may neglect a’ without sensibly
affecting the rate of approximation. If then we put
dz
tdQ

—_—X

[eot c@— 7 —

g=-—
we shall have
) Ax
cot (@ —E)—cot (Q—F)+g

This value of d@ is yet to be reduced to seconds by multiplying
it by cosec 1’7 or 206265"".

To find g, we may take, as a sufficiently exact expression for
computing d@,

dQ =

dz,
5, dQ

and by differentiating (502) (omitting the factor p,, which will
not sensibly affect g),

g=—

cos Asinydf 4 sinfcosydy—=—1cos QdQ
cos fcosyd3 —sinfsinydr—= [lsin QdQ

whence, by eliminating dy,

dg _ lsin (@ —7)
dQ— cos 3

By (505) a sufficiently exact value of ¢, for our present pur-
pose is

§,=cos B
whence
(ii = —2gin § ‘_ié.
aQ aQ
g = lsin 3 sec’ B8in (@ — ) (532)
Putting, finally,
sin (E — F)

G=cot (@Q— E)—cot(@—F)= (533)

8in (@ — E) sin (@ — F)
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we have
_ [5.67664]x

G+yg

in which 5.67664 is the logarithm of 4 X 206265,
When the true value of @ has thus been found, the corre-

sponding latitude and longitude on the earth’s surface are found
as in Art. 298.

aQ (534)

312. The preceding solution of this problem (which is com-
monly regarded as one of the most intricate problems in the
theory of eclipses) is very precise, and the successive approxi-
mations converge rapidly to the final result. For practical pur-
poses, however, an extremely precise determination of the limit-
ing curves of the penumbra is of little importance, since no
valuable observations are made near these limits. I shall, there-
fore, now show how the process may be abridged without making
any important sacrifice of accuracy.
In the first place, it is to be observed
that great precision in the angle @
L is unnecessary. If LM, Fig. 43, is

the limiting curve which is tangent

at A to the shadow whose axis is at
¥ () and if @ isin error by the quan-
tity 4 CA’, the point determined will be (nearly) 4’ instead of A.
Now, although 4’ may be at some distance from A4, it is evident
that it will still be at a proportionally small distance from the
limiting curve. In fact, we may admit an error of several
minutes in the value of @ without sensibly removing the computed
point from the curve. The equation (530), which determines @),
may, therefore, without practical error be written under the
approximate form

Fig. 43.

4

esin(Q — E)=2¢, fsinQ
and in this we may employ for ¢, the value
{,=cos @

Ience, having found A from (502) by employing the first assumed
value of @, we then have

sin (Q—E)=fcosﬁ

sin Q e
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To find the latitude and longitude of the extreme points, we
take y = N+ +, tan ¢’ = p, tan y, and proceed by (519).

ExaMpLE.—To find the southern limit of the eclipse of July
18, 1860.

First. To find the extreme times.—Taking T, = 2*, we have,
from our tables, pp. 454, 455, and pp. 464, 465,

z, = — 0.0812 o = + 0.5452

¥, = + 0.5961 ¥y = — 0.1610
l= 05367

E = 14°17 ' = + 0.0514

loge = 9.7977 ¢ = — 0.0151

where we take mean values of 2/, ¥/, &c. From these we find
by (537), taking the upper signs in the formule,

log m = 9.8554 M = 289° 32'
log n = 9.7182 N=106 28
M -N=183 4
Hence, by (538),

log sin (M — N) =n8.7283 log cos (M — N) = n9.9994
log sin § = n8.0837 mcos (M —N)
log cos 4 = 0.0000 =103
SB8Y _+1.918
r=—1.480
orr= 4 2.346

Therefore, for the first and last points of the curve we have,
respectively, the times

T, = 2» — 1*480 = 0».520

T,=2 + 2.346 — 4 .346
To find the latitude and longitude of the extreme points corre-
sponding to these times, we have -

First Point. Last Point.
¥ 180° 42’ — 0042
r=N+3 287 10 105 42
log tan y | n0.5102 n0.5492
logp,=9.9987 logtany | 2n0.5089 n0.5479
d, 21° 1'4 20° 59'.8
" 6 19.2 63 427



488 SOLAR ECLIPSES.
Hence, by (519),

102° 40 - 339° 30
186 5 — 14 47

?

Second. To find a series of points on the curve.—We begin by
computing the limits of @ for the hours 04 1% 2 3* 4* 5% Thus,
for 0* we have, from the table p. 465, and by (531),

T (1]
log f| 9.3882
loge | 9.8019
log tan v | 9.5863
v| 21° 56
$3E| 2 16.7
log tan (45° + v) | 0.3533
log tan % E | 8.5997
log tan ¢ | 8.9530
v| 8 7T
1E4 4|7 244

For the southern limiting curve @ falls between E and } E+ 4,
i.e., for 0% between 4° 33’ and 7° 24’. In the same manner we
form the other numbers of the following table:

T Lower limit of Q. [ Upper limit of Q.
0r 4° 33 7° 24
1 9 22 15 18
2 14 17 24 13
3 19 14 30 53
4 24 8 38 4
b 28 55 44 36

The points of the curve are to be computed for times between
0*.520 and 4*.346, and we shall, therefore, assume for 7 the
series 0.6, 0*.8, 1*.0..... 4*0, 4*.2, which, with the extreme
points above computed, will embrace the whole curve.

Instead of determining @ for each of these times by the
method of Art. 8312, it will be sufficient to determine it for the
hours 1%, 2%, 8% 4% and, hence, to infer its values for the inter
vening times. Thus, for 7= 1*, assuming @ = 12°, which is s
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mean between its two limiting values, we proceed by the equa-
tions (502), for which we can here use

sin gsiny =z — I 8in Q
sin 8 cosy =y — I cos @

as follows:

For ﬂ:l'.{ x

y

l

Assume Q
a=x —1lsinQ
b=y —1lcos@Q

log @ = log sin 8 sin y
log b = log sin g8 cos y

log sin 8
‘We thus find,
for T = 1»
Q@ = 11° 55,

— 0.6266
+ 0.9170
0.5368
12°
— 0.7382
+ 0.3920
19.8682
9.5933
9.9221

23
22° 20,

log cos g | 9.7896
103% 0.5023
log tan v | 9.3319
V] 122 71
$E| 4 41.2
log tan(45°+ ') | 0.1894
tan $ £ | 8.9137
tan(Q — 3 E) | 9.1031
Q—1%E 7°13'5
Q | 11 547
8» 4
30° 16, 32° 17".

From these numbers we obtain by simple interpolation suffi-
ciently exact values of @ for our whole series of points. And
since it is plain from Art. 312, that even an error of half a
degree in @ will not remove the computed point from the true
curve by any important amount, we may be content to employ
the following series of values as final :

T Q T Q T Q T | @Q
06| 8° 1*6 | 18° 206 | 28° 346 | 31°
08|10 18|20 2.8|29 3.8182
1.0(12 2.0 22 3.0|30 4.0 32
1214 2.2 |24 3.2|30 4271325
14116 24126 3.4]31

For each time T we now take z, y, and [, from the tables of
the eclipse, and, with the value of @ for the same time, deter-
mine the required point on the outline of the shadow by the
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special cases somewhat greater precision might be desired than
has been observed in the preceding example. In any such case,
recourse may be had to the rigorous method of Art. 311. Since
the limits of total or annular eclipse often include but a very
narrow belt of the earth’s surface, extending nearly equal
distances north and south of the curve of central eclipse,
they may be derived, with sufficient accuracy for most purposes,
from this curve, by a method which will be given in Art. 320.
The curve upon which any given degree of obscuration can
be observed may also be computed by the preceding method. It
is only necessary to substitute 4 for [, and to give 4 a value cor-
responding to D according to the equation (529). All the curves
thus found begin and end upon the curve of maximum in the

horizon.
Curve of Central Eclipse.

815. To find the curve of central eclipse upon the surface of the
earth.—This curve contains all those points of the surface of the
earth through which the axis of the cone of shadow passes. The
problem becomes the same as that of Art. 298 upon the suppo-
gition that the shadow is reduced to a point—that is, when
!l — i{ = 0, and, consequently, by (498), -

f=x 1=y
Hence, putting
=9

Y 6
the equations (502) to (508) are reduced to the following ex-
tremely simple ones, which are rigorously exact:

sin fsiny ==

sin  cosy =y,

csin C =y,
ccos C =cos 8
cos ¢, 8in 8 == (539)

cos ¢, co8 8 = c cos (C 4 d,)
sin ¢, = ¢ 8in (C 4 d))
tan ¢,
VA—e)
It will be convenient to prepare the values of y, for the prin-
cipal hours of the eclipse; and then for any given time 7' taking
the values of z, y,, d,, p,, from the eclipse tables, these equations
determine a point of the curve.

tan ¢ =

o=np—173
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816. The extreme times between which the solution is possible,
or the beginning and end of central eclipse upon the earth, are
found as follows. At these instants the axis of the shadow
is tangent to the earth’s surface, and the central eclipse is
observed at sunrise and sunset respectively. Hence, Z being the
zenith distance of the point Z, we have cos Z = 0, or, by (503),
¢,= 0, whence, by (499),

&+ 7)|’=
2+ y’=1

which is equivalent to putting sin 8 =1, or cos # =0, in the
first two equations of (539), so that we have

or

sin y =z, cos y =¥,

Let 2’ and y,” denote the mean hourly changes of x and y, com-
puted by the method of Art. 296. Let the required time of
beginning or ending be denoted by 7= T,+ r, T, being an
arbitrarily assumed epoch; then, if (x) and (y,) are the values of
z and y, taken for the time 7, we have for the time 7,

siny = () + &'t
cosy = () + ¥,r

Let m, M, n, N, be determined by the equations

m sin M = (x) nsin N=2oa’ (540)
m cos M = (y,) n cos N =y’
then, from the equations
siny —=msin M 4 nsin N.r
cosy =mcos M 4+ ncosN.t
we deduce, in the usual manner,
sin (y — N) = m sin (M — N)
cos(y — N)=mcos(M — N) 4 nr
or, putting ¢ = y — NN, the solution is
sin § = m sin (M — N)

T___co;q._mcos(il[—N) (541)

T=T 4+
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where cos 4 is to be taken with the negative sign for the
beginning and with the positive sign for the end.

To find the latitude and longitude of the extreme points cor-
responding to these times, we have, in (589), cos =0, sin § =1,
and, therefore, C= 90°, e = cos y: hence, taking y =N+ 4},

cos ¢, 8in 8 =  sin y
€os ¢, €08 8 = — co8 y 8in d,
gin ;=  co0s y cos d, (542)
tan g — — PR F1_ w=p—9
V(1 —ee)

817. Tb find the duration of total or annular eclipse at any point of
the curve of central eclipse.—This is readily obtained from numbers
which occur in the previous computations. Let 7= the time
of central eclipse, ¢ = the duration of total or annular eclipse,
then 77= T = }tis the time of beginning or end. Let x and
y be the moon’s co-ordinates for the time 7'; £ and 7 those of
the point on the earth at this time; z’, ¥/, §, 7/, the hourly in-
crements of these quantities; then, at the time 7”7 we have, by
(491),

(—i)sin@Q=zF b2t — (& F 4&)
—®)cs@=y F iyt —(nF 470

But we here have z = §, y = 7, and we may put { = ¢, = cos §,

whence

(I — icos j) sin Q=$(a:’—5')%

(l—icosﬁ)cosQ:..—.(y’_y')%

For the values of &’ and 7’ we have, with sufficient precision,
since ¢ is very small,

&' =y’ (— y cos d 4 cos § 8in d)
y'=pzsind

Hence, by (511) and (512), we find, very nearly,

¥ —&=dc¢—pcoadcosf=¢c—fcos B
y—7==V

If, therefore, we put
L=1—1icosg a=c—fcosp (543)
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we have

LsinQ=92£ Lcos Q= be

where we omit the double sign, since it is only the numerical
value of ¢ that is required. Hence, we have, for finding ¢ the
equations
. tanQ_.— t=7200L3?“_Q

g a

(5+)

the last equation being multiplied by 8600, so that it now gives
¢ in seconds.

The value of cos 8 is to be taken from the computation of the
central curve for the given time 7, and /, log ¢, log f, ¢, ¥, from
our eclipse tables.

318. To find where the central eclipse occurs at noon.—In this case
we have, evidently, x = 0, and hence, in (539),

sin f =y, (549)

by which $ is to be found from the value of y, which corresponds
to the time when z = 0. We then have C=p3, ¢ =1, =0,
and therefore the required point is found by the formule

=28+ 4d, w=p (546)

in which d, and g, are taken for the time when z = 0.

819. The formule (539), (545), and (546) are not only extremely
simple, but also entirely rigorous, and have this advantage over
the methods commonly given, that they require no repetition to
take into account the true figure of the earth. It may be
observed here that the accurate computation of the central curve
is of far greater practical importance than that of the limiting
curves before treated of.

The formule (541) must be computed twice if we wish to
obtain the times of beginning and end with the greatest pos-
gible precision; for, these times being unknown, we shall have
at first to employ the values of 2’ and y’ for the middle of the
eclipse, and then to take their values for the times obtained by
the first computation of the formulee. With these new values a
second computation will give the exact times.
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ExaypLEe.—To compute the curve of central and total eclipse
in the eclipse of July 18, 1860.

It is convenient first to prepare the values of yl-— Y for the
principal hours of the eclipse, as well as its mean hourly differ-

ences. With the value log p, = 9.99878 we form, from the values
of y given in the table p. 454, the following table:

Gr.T % '
0 -+ 0.91972 — 0.16095
1 .75896 114
2 59782 132
3 .43633 149
4 27450 166
5 11237 182

To find the times of beginning and end we may assume 7,= 2*;
and for this time we have

(x) = m sin M = — 0.08124 o’ = n sin N = 4 0.5453

(y,) = m cos M = + 0.59782 Yy =ncos N = — 0.1613

whence logm = 9.78054 logn= 9.7548
M= 852°15'40" N=  106°28.7

Employing but four decimal places in the logarithms for a first
approximation, we find, by (541),

__mcos(M—N)

pa— »
m = 4 0».435
S8V 1468
7, = —1.033
7, = + 1.903
Approximate time of beginning = 2* — 1».033 = 0».967
“ ¢ end =2 41.903 = 3 .903

Taking now 2z’ and y/ for these times respectively, and re-
peating the computation, we have
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C+d, 57° 52' 10”
log z = log cos ¢, sin # n8.90977
log ¢ cos (C + d,) = log cos ¢, cos & 9.72485
log ¢sin (C+d) = log sin ¢, 9.92636
) 851° 17" 13"
B, 28 31 12
w 37 13 59
? 57 39 20
App. Time = 8 in time, 23 25~ 8.8

For the duration of totality at this point, we take from pp. 454,
464, 465,
! = — 0.009082 b = 4 0.1532

logi= 7.6608 ¢ = + 0.6011
logf= 93883

and hence, with log cos 8 = 9.9017 above found, we obtain, by

(543),
L = — 0.012734 a = + 0.4061

and, by (544), disregarding the negative sign of L,
= 2113 = 8= 313

For the place where the central eclipse occurs at noon, we find
that x = 0 at the time 7'= 2149, at which time we have

y,=s8in B + 0.57378
B 85° ¢ 53"
d, 21 045
?, 56 1 38
? 56 6 57
p=o0 80 45 18

The whole curve may be traced through the points given in the
following table:

VYor. I.—32
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SOLAR ECLIPSE, July 18, 1860.—CURVE OF CENTRAL AND TOTAL ECLIPSE.

. ng. W. from .
Greenwich Latitude. Largenwi?l: Apll)‘inlx‘:.c o Duration of
Mean Time. ¢ Totality.
w 14

02967 45° 36'.4 126° 38'.1 | 16*27=9
1.0 50 87.8 113 11.6 | 17 21 .8 2= 145
1.2 57 16.2 89 146 | 19 9.1 2 8.1
14 59 29.1 72 52.8 | 20 26 .6 2 655.8
1.6 59 55.1 59 5.2 | 21 83.7 3 114
1.8 69 11.6 47 16.6 | 22 33 .0 3 23.1
2.0 67 89.3 87 140 23 25 .1 3 313
2.149 56 7.0 80 45.3 0 0.0 3 34.7
2.2 55 381.5 28 42.6 011.2 3 36.2
24 52 56.9 21 256.1 0 52 4 3 38.0
2.6 50 0.9 15 8.9 1298 3 36.4
2.8 46 46 3 9 21.8 2 4.6 3 32.0
8.0 43 13 .6 4 2.2 2379 8 246
8.2 39 20.7 358 47.1 3109 3 144
3 4 356 1.6 353 12.5 345 3 3 1.1
3.6 80 1.5 346 35 .4 4 23 .7 2 43.5
3.8 23 28.5 836 44.1 5 15 .1 2 185
8 .904 156 45.6 320 563.2 6 24 .8

Northern and Southern Limits of Total or Annular Eclipse.

820. To find the northern and southern limits of total or annular
eclipse.—As already remarked in Art. 814, these limits may be
rigorously determined by the method of Art. 811, by taking
! = the radius of the umbra (i.e. for interior contacts); but I here
propose to deduce them from the previously computed curve of ,
central eclipse. This radius [ is assumed to be so small that we
may neglect its square, which can seldom exceed .0003, and this
degrce of approximation will in the greater number of cases
suffice to determine points on the limits within 2’ or 3/, which is
practically quite accurate enough.

The two limiting curves of total or annular echpse, then, lie
80 near to the central curve that the value {, = cos 3, for a given
time 7, already found in the computation of the latter curve,
may be used for the former in the approximate equation which
determines Q. 'We can, therefore,immediately find @by (535),—i.e.
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These values are yet to be divided by sin 1’ to reduce them to
minutes of arc. It will be convenient to put

l' = l i’ = i

sin 1’ sinl’

(548)
=l—- icosg U

A — —
cos@sinl’ cosp

il

in which , ¢/, and 2 will be expressed in minutes. '
‘We may in practice substitute dp for dgp,, within the limits of

accuracy we have adopted; for we find, from the equations on

p. 457, :

_ dg, cos’le . 1 —eesin’yp

o vQa -—ee).cos'ga‘ = v (1 —ee)

dy

where the multiplier of dg, cannot differ more from unity than
V(1 — ee) does,—i.e. not more than 0.00335: so that the substitu-
tion of one for the other will never produce an error of 1’ so long
as dg, is less than 5°.

Finally, adapting the values of dw and dyp for logarithmic
computation, by putting

h sin H = cos Q
h cos H = sin @ sin d,
we have (549)
dw = A [k cos (8 — H) tan ¢, + sin @ cos d,] i
dp = 2 h sin (3 — H)

The formulee (547) give two values of @ differing 180°. The
second value will evidently give the same numerical values of
dw and dg, but with opposite signs; and therefore we may com-
pute the equations (549) with only the acute value of @, and then
the longitude and latitude of a point on one of the limits are

o + do, ¢ + de
and those of a point on the other limit are
o — do, ¢ — dp
The first of these limits will be the northern in the case of
total eclipse, but the southern in the case of annular eclipse,

observing always to take [ with the negative sign for total eclipse,
as it comes out by the formule (487) and (489).
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" It is evident that this approximate method is not accurate
when cos 8 is very small, that is, near the extreme points of the
curves; and it fails wholly for these points themselves, since
cos 8 is then zero and the value of A becomes infinite. These
extreme points, however, are determined directly in a very
simple manner by the formule (536), (537), (538), combined with
(519), by employing in (536) and (537) the value of ! for interior
contacts; and it is with these formule, therefore, that the com-
putation of the limits of total or annular eclipse should be com-
menced.

ExaMPLE.—F'ind the northern and southern limits of total
eclipse in the eclipse of July 18, 1860.

First. To find the extreme points.—The values of b’ and ¢’ for
exterior contacts, from which the values of E on p. 465 are
derived, differ so little from those for interior contacts that in
practice, unless extreme precision is required, we may dispense
with the computation of the latter. For our present example,
therefore, taking the value of E for 7, = 2* and the mean value
of log e, as in the computation of the extreme points of the
southern limit for the penumbra, p. 487, together with

{ = — 0.0091
we find, by (536) and (537), for the northern limit,

log m = 9.7854 M — 352° 33'.6
log n = 9.7553 N =106 270

and for the southern limit,

log m = 9.7781 M = 3851° 55'.0
log n = 9.75642 N =106 27.0
Hence, by (538),
Northern Limit. Southern Limit.
M M
l First Point. Last Point. ” First Point. l Last Point. '

¥ 213° 54'.3 826° 5'.7 212°389'.0 327°21'.0
T 02976 34892 0*.951 3917

Taking y = N+ «, and the values of d, and g, for these times
respectively, with log p, = 9.9987, we find, by (518) and (519),
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log tan Y

e F o

4

320° 21'.3
n9.9170
21° 1’2
246 81.7
13 96
126 87.9
46 7.7

SOLAR ECLIPSES.

72° 827
0.5012

21° 0.0
96 26.7
56 54.1
320 27.4
16 21.6

819°
n9.9363
21° 1'2
247 26.7
12 47.1
125 20 4
45 2.8

6'.0

73°48.0
0.5355

21° 00
95 57.7
57 16.6
321 189
15 114

Second. To find a series of points between these extremes, by
the aid of the curve of central eclipse, we assume the same series

of times as in the computation of that curve, and proceed by
(547), (548), and (549); to illustrate the use of which I add the

computation for 7'= 2* in full.

From the computation, p. 49,

we have
For T=2* log cos g8 9.9017
log tan ¢, 0.1970
8 351° 17'.2
d, 21 0.8
" 37 14.0
@ 57 89.3
Then, by (547), By (548),
f v | — 0.009082
(p-465) log " 9.5953 log ¢ 7.9583
log cos 9.9017 log !’ n1.9945
log tan ' 9.4970 log i 7.6608
v 17° 26'.0 log i’ 1.1971
1E T 87 i 15.74
log tan (45° 4 ') 0.2823 I'sec 8 | — 89.14
log tan } E 9.0982 A | — 54.88
logtan(@ — 31 E) 9.3805
Q—1iE 13° 30".3
Q 20 89.0
Hence, by (549),
log cos @ = log A sin H 9.9712
log sin @ sin d, = log h cos H 9.1020
log k 9.9751
H 82°18".2
3 —H 268 59.0
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latter being negative) for the place of observation. From (488)
we find, by putting sec f=1,

L+ L=2(L—k)

and hence

_ L—4

T 2(L—k)
in which k = 0.2728. . .

If we neglect the augmentation of the moon’s diameter, or,

which is equivalent, the small difference between L and [, and
put '

(558)

l

& = —
2(1—k)
we have (559)

D=¢Tesiny

where the lower sign is to be used when sin 4} is negative, so
that D is always the numerical difference of € and ¢ sin 4. In this
form ¢ may be computed for the eclipse generally, and + will be
derived from the computation for the penumbra for the given
place. A preference should be given to the value of 4 found
from the computation for the time nearest to that of greatest

obscuration, which is usually that used in the first approximation
of Art. 322.

ExampLE.—Find the time of beginning and end, &c., of the
eclipse of July 18, 1860, at Cambridge, Mass.
The latitude and longitude are

¢ = 42° 22/ 49" w ="T1° 7' 25"

For this latitude we find, by the aid of Table III., or by the
formule (87),

log p sin ¢’ — 9.82644 log p cos ¢’ = 9.86912

‘With the aid of the chart, p. 504, we estimate the time of the
middle of the eclipse at Cambridge to be not far from 1*. Hence,
taking 7; = 1* for our first approximation, we take for this time,
from the eclipse tables, p. 454,

z = — 0.6266 2= + 0.5468 1= 0.5368
y = + 0.7567 ¥ = — 0.1605 log i = 7.66287
d= 20°67.4 m= 18°81'2 log u'= 9.41799
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Hence, by (550) and (551),

m—ow=9= 302°23.8 logf=  9.7853
B— 59 24.8 (= 0.0038
£ = — 0.6246 L=1—i{= 05340
N = + 0.4844
£= 4 0.1088
7 = — 0.0685
and, by (552) and (553),
mein ¥ —z — § = — 0.0020 nsin N=2— §'= 4 0.4415
mcos M =y —n =+ 0.2728 ) ncos N=y' — v = — 0.1020
logm = 9.4350 - logn =  9.6562
M= 8569°84.7 : N= 10806
M—_N= 256 84.1 mcos (M—N)
log sin y — n9.6955 - =10
log cos y =  9.9887 L o:s ¥ — 1038
_f — os8ss
T= {or + 1168
Approximate time of beginning — 0*.117
“ o end =2.163

Taking then for a second approximation 7;= 0*.12 for begin-
ning, and 7;,= 216 for end, we shall find*

Beginning. End.

T, 0212 2416

x — 1.10642 -+ 0.00601

y + 0.89783 + 0.57034

2 | + 054528 + 0.54530

Yy — 0.16015 — 0.16090

d 20° 57’ 45" 20° 56’ 53"

o 019 8 30 5513

l 0.53686 0.53673

3 289° 11’ 43" 319° 47’ 48"

& — 0.69868 — 0.47755

7 + 0.53915 + 0.42423
log ¢ 9.66935 9.88504

g | -+ 0.06368 + 0.14793

7 | —0.06544 — 0.04470

# The values of z' and y’ here employed are not those given in the table p. 445,
but their actual values for the time 7, as given in the table of z’ and y on p.
464. '
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iz
msin M
mcos M

log m

nsin N
ncos NV

log n

M—N

Local time, t{

North Pt. of the sun =

Angleof Pt.of Contact from }
Q=N++

Beginning. End.
0.00215 0.00353
0.53471 0.53320
— 0.40774 -+ 0.48356
-+ 0.35868 -+ 0.14611
9.73484 9.70842
311° 20" 16” 78° 11' 15"
-+ 0.48160 -} 0.839737
— 0.09471 — 0.11620
9.69093 9.61702
101° 7’ 82" 106° 18’ 0"
210 12 44 826 53 15
210 44 0 328 49 56
—_ 31’ 16” — 1°56' 41"
+ 020197 + 0*.0800
0*.1397 2 .2400
0> 8= 23 20 14= 24+
4 44 30 4 4 30
19 23 53 21 29 54
July 17. July 17.

811° 51’ 32"

A third approximation, commencing with
times, changes them by only a fraction of a second.

To find the angular distance of the point of contact from the-
vertex of the sun’s limb, we have from the second approximation,

by (554) and (555),

4 &'r=psiny

7 + 7't = p cosy

r

Angle from vertex — Q@ —

The time of greatest obscuration is best found from the first

T5° T 56

the last computed

Beginuning. End.
— 0.6974 — 0.4658
+ 0.5379 + 0.4206

307° 38'.8 312° 4.5

4 12.7 123 3.4

approximation, which gives, by (556),

511
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in which g/ denotes the change of g, in one second, and is the
same as the »’ of our former method divided by 3600.

To find m’ we have, following the same notation, and neglect-
ing the small changes of E, F, G, H, [, and f,

B'= y’=C'
V = B'—p'Gpcosg sind
¢ =— C'4 u Hpcos ¢ sin &

Since f is small, we may in these approximate expressions put
G = H, and hence

V=—=B'—yGpcos¢ sind (561%)
Now, from the formula m?* = bc, we derive

2mm =cb'+ b= (c—b)¥
m’=.),( g—\/g )b’

which, if we assume

c ¢ m
becomes
m = — b’ cot Q

and therefore r is found by the formula

m—a

T + ' cot @ (56%)

The Ephemeris gives also the values of A’, B/, and C’, which
are the changes of 4, B, and C in one second. These changes
being very small, the unit adopted in expressing them is .000001;
so that the above value of 7, as also the value of x’in (561),
must be multiplied by 10%. The formule (560-563) then agree
with those given in the explanation appended to the Ephemeris.

It is easily seen that @ here denotes the same angle as in the
preceding articles; for we have at the instant of contact

v 2m r—§&

tanQ—_——W:b—-c:y—r)

Examples of the application of this method are given in every
volume of the American Ephemeris.
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826. The preceding articles embrace all that is important in
relation to the prediction of solar eclipses. Since absolute rigor
is not required in mere predictions, I have thus far said nothing
of the effect of refraction, which, though extremely small, must
be treated of before we proceed to the application of observed
eclipses, where the greatest possible degree of precision is to be
sought.

CORRECTION FOR ATMOSPHERIC REFRACTION IN ECLIPSES.

327. That the refraction varies for bodies at different distances
from the earth has already been noticed in Art. 106; but the
difference is so small that it is disregarded in all problems in
which the absolute position of a single body is considered.
Here, however, where two points at very different distances from
the earth are observed in apparent contact, it is worth while to
inquire how far the difference in question may affect our results.

Let SMDA, Fig. 44, be the path
of the ray of light from the sun’s
limb to the observer at A4, which
touches the moon’s limb at M; SMB
the straight line which coincides with
this path between Sand M, but when
produced intersects the vertical line
of the observer in B. It is evident
that the observer at A sees an ap-
parent contact of the limbs at the
instant when an observer at B would
see a true contact if there were no
refraction. Hence, if we substitute
the point B for the point 4 in the
formula of the eclipse, we shall fully take into account the effect
of refraction.

For the purpose of determining the position of the point B,
whose distance from A4 is very small, it will suftice to regard the
earth as a sphere with the radius p = CA. It is one of the pro-
perties of the path of a ray of light in the atmosphere that the
product gusin i is constant (Art. 108), ¢ denoting the normal to
any infinitesimal stratum of the atmosphere at the point in which
the ray intersects the stratum, x the index of refraction of that
stratum, and ¢ the angle which the ray makes with the normal.

Fig. 44.

c
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If, then, p, y, Z' denote the values of ¢, ¢, and 7 for the point 4,
we have, as in the equation (149),

gn 8in { = pp, 8in Z’

in which Z’ is the apparent zenith distance of the point M, and
X i8 the index of refraction of the air at the observer.

Now, let us consider the normal ¢ to be drawn to a point D of
the ray where the refractive power of the air is zero, that is, to
a point in the rectilinear portion of the path where g=1. Then
our equation becomes

gsin { = pp, 8in Z’

in which ¢ = CD, i = MDF = CDB. 7Putting Z = the true
zenith distance of M = MBYV, and s = the height of B above
the surface of the earth = A B, the triangle CDB gives

(p+98)sinZ =gsini
which with the preceding equation gives

8 p,8inZ’
1 = = 564
+ P sin Z (=64)
In order to substitute the point B for the point 4 in our com-
putation of an eclipse, we have only to write p + s for p in the

equations (483), or p(1 + 2 ) for p. Therefore, when we have
q ), or p o |tore

computed the values of log &, log 7, and log ¢ by those equa-
tions in their present form, we shall merely have to correct them

by adding to each the value of log (1 + %). This logarithm

may be computed by (564) for a mean value of g, (= 1.0002800)
and for given values of Z. For Z we may take the true zenith
distance of the point Z (Art. 289), determined by @ and d. But
by the last equation of (483) we have so nearly cos Z = { that
in the table computed by (564y we may make log { the argu-
ment, as in the following table, which I have deduced from that
of BEsseL (Astron. Untersuchungen, Vol. 1L p. 240).
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log ¢ Conﬁtig'n,’?fc .logs. log ¢ Corrzt;lifo’n”:)t; .logs.
0.0 0.0000000 8.5 0.0000446
9.9 .0000001 8.4 0000525
9.8 .0000002 8.3 .0000602
9.7 .0000005 8.2 0000672
9.6 .0000008 8.1 0000734
9.5 0.0000014 8.0 0.0000788
9.4 .0000023 7.9 .0000835
9.3 .0000035 7.8 0000875
9.2 .0000054 7.7 .0000909
9.1 .0000081 7.6 .0000937
9.0 0.0000119 7.4 0.0000978
8.9 .0000167 7.2 .0001006
8.8 .0000225 70 .0001023
8.7 .0000292 6.5 .0001044
8.6 .0000367 6.0 0001051
8.5 0.0000446 —® 0.0001054

The numbers in this table correspond to that state of the at-
mosphere for which the refraction table (Table II.) is computed;
that is, for the case in which the factors 3 and y of that table are
each = 1. For any other case the tabular logarithm is to be
varied in proportion to 8 and 7.

It is evident from this table that the effect of refraction will
mostly be very small, for so long as the zenith distance of the
moon is less than 70° we have log £ > 9.53, and the tabular
correction less than .000001. From the zenith distance T0° to
90° the correction increases rapidly, and should not be neglected.

CORRECTION FOR THE HEIGHT OF THE OBSERVER ABOVE THE

LEVEL OF THE SEA.

328. If o is the height of the observer above the level of the
sea, it is only necessary to put p 4 8’ for p in the general formulse
of the eclipse; and this will be accomplished by adding to log ¢,

log #, and log ¢ the value of log (1 + f)—), which is (M being
the modulus of common logarithms)

aff 3£ + 1]

But ¢ is always so small in comparison with p that we may
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neglect all but the first term of this formula; and hence, by
taking a mean value of p (for latitude 45°) and supposing ¢’ to
be expressed in English feet, we find

Correction of log £, log 7, log £ = 0.00000002079 &  (565)

For example, if the point of observation is 1000 feet above
the level of the sea, we must increase the logarithms of &, 7,
and £ by 0.0000208.

If ¢’ is expressed in metres, the correction becomes 0.000000064 s’.

APPLICATION OF OBSERVED ECLIPSES TO THE DETERMINATION OF TER-
RESTRIAL LONGITUDES AND THE CORRECTION OF THE ELEMENTS
OF THE COMPUTATION.

329. To find the longitude of a place from the observation of an
eclipse of the sun.—The observation gives simply the local times
of the contacts of the disc of the sun and moon: in the case of
partial eclipse, two exterior contacts only; in the case of total or
annular eclipse, also two interior contacts.

Let
o = the west longitude of the place,

t = the local mean time of an observed contact,
# = the corresponding local sidercal time.

The conversion of ¢ into g requires an approximate knowledge
of the longitude, which we may always suppose the observer to
possess, at least with sufficient precision for this purpose.

Let T, be the adopted epoch from which the values of z and y
are computed (Art. 296), and let

Z, Y, = the values of = and y at the time T,
2’, y = their mean hourly changes for the time ¢ 4 o;

then, if we also put
r=t4+w—T, (566)

the values of z and y at the time ¢ 4o (which is the time at the
first meridian when the contact was observed) are

z, + #'r, Yot YT

The values of z’ and y’ to be employed in these expressions
may be taken for the time ¢ 4 w obtained by employing the
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approximate value of w, and will be sufficiently precise unless
the longitude is very greatly in error.

The quantities ! and ¢ change so slowly that their values
taken for the approximate time ¢ 4 o will not differ sensibly
from the true ones. For the same reason, the quantities ¢ and d
taken for this time will be sufficiently precise: so that, the latitude
being given, the co-ordinates &, 3, { of the place of obscrvation
may be correctly found by the formule (483). Since, then, at
the instant of contact the equation (490) or (491) must be exactly
satisfied, we have, putting L=10— i,

Lsin@Q=x,—&+4 2~

LoosQ=y, —1+yc } eon

in which r is the only unknown quantity. Let the auxiliaries
m, M, n, N be determined by the equations

msin M =z, — & nsin N=oz } 5
meos M =y, — 7 ncosN=y (368)

then, from the equations

LeinQ—=msin M+ nsinN.r
LcosQ=mcos M+ ncosN.z

by putting 4 = @ — NV, we obtain

sin.[,:————msm(];[l—m
Lecosy mceos(M —N)
= " (569)
__msin(M — N —4)
“n sin

where the second form for r will be the more convenient except
when sin 4 is very small. As in the similar formule (553), the
angle 4 must be so taken that L cos ) shall be negative for
first contacts and positive for last contacts, remembering that in
the case of total eclipse L is a negative quantity.
Having found r, the longitude becomes known by (566), which
gives
o=T,—t+r (570)
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If the observed local time is sidereal, let g, be the sidereal
time at the first meridian, corresponding to 7; then, r being
reduced to sidereal seconds, we shall have

w=p—p+r
and this process will be free from the theoretical inaccuracy
arising from employing an approximate longitude in converting

p into ¢
The unit of r in (569) is one mean hour; but, if we write

r— hLcosy hmeos(M— N)
n n

=h

m sin(M —N—4)
n sin §

we shall find = in mean or sidereal seconds, according as we take
h = 8600, or h = 8609.856.

330. The rule given in the preceding article for determining
the sign of cos 4 (which is that usually given by writers on this
subject) is not without exception in theory, although in practice
it will be applicable in all cases where the observations are
suitable for finding the longitude with precision; and, were an
exceptional case to occur in practice, a knowledge of the approxi-
mate longitude would remove all doubt as to the sign of the ternr
Lcosy

-

But it is is easy to deduce the mathematical condition

for this case.
At the instant of contact, the quantity

@—&+2+ G—2+Y
is equal to L% At the next following instant, when r becomes
T + dr, it is less or greater than L? according as the eclipse is
beginning or ending. If then we regard L? as sensibly constant,
the differential coefficient of this quantity relatively to the time
must be negative for first and positive for last contacts. The
half of this coefficient is

(rg =&+ 20)(@—8)V+ W—21+ Y)Y —7)
(where the derivatives of § and  are denoted by ¢’ and '), or, by
(667), putting IV + + for @,

L[sin(N+4) @ —&") + cos(N+¥) & —17)]
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Computing §’ and 7’ by the formule (551), or, in this case, by

&'=p'p cos ¢’ cos (u — a) yY=u€sind
and putting
nein N=o — & neos N'=y — v

the above expression becomes
L n' cos (N — N+ ¥)

Hence, when L is positive, that is, for exterior contacts and
interior contacts in annular eclipse, 4 must be so taken that
cos (N — N’ + ) shall be negative for first and positive for last
contact. That is, for first contact « must be taken between
N’'— N+ 90° and N'— N + 270°; and for last contact between
N’'— N + 90° and N'— N — 90°. For total eclipse, invert these
conditions. '

In Art. 322, we have N = N’, and hence the rule given for
the case there considered is always correct.

831. To investigate the correction of the longitude found from an
observed solar eclipse, for errors in the elements of the computation.
Let :
azx, Ay, AL = the corrections of x, y, and L, respectively,
for errors of the Ephemeris,
A%, an = the corrections of £ and 7 for errors in p and ¢/,
ar = the resulting correction of r.

The relation between these corrections, supposing them very
small, will be obtained by differentiating the values of L sin ¢
and L cos @ of the preceding article, by which we obtain

ALsin Q4+ LcosQa@Q = ax — a5 4 2 ar

ALcosQ — LsinQaQ =ay — ay + y ar
where ar and ay, being taken to denote the corrections of
ax=12z,+ z'rand y = y,+ y’r, include the corrections of z’ and y'.
Substituting in these equations n sin V for z’ and n cos IV for
¥', and eliminating a @, we find

AL =(ax — af)sin@Q 4 (ay— an) cos @+ n cos (Q — N). ar
and substituting for @ its value N+ o, .

cos (N + 3) AL '

sin (N 4)
— - —(ay—a
7 CoS ¢ (ay ") co8 ¥ + n Co8 ¢

Ar = — (ax — Af)
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or
1 .
Arz—z—(Ax sin N 4 ay cos N) —;-(——AzcosN-l- aysin N)tany
-+ %(AS sin N+ Ay cos V) —-};(——AEcosN+ Ay sin ) tan ¢

aL sec
+ 2
which is at once the correction of r and of the longitude, since
we have, by (570), aw = ar.

571

832. In this expression for ar, the corrections azr, ay, &c. have
particular values belonging to the given instant of observation
or to the given place. In order to render it available for deter-
mining the corrections of the original elements of computation,
we must endeavor to reduce it to a function of quantities which
are constant during the whole eclipse and independent of the
place of observation. For this purpose, let us first consider
those parts of ar which involve ax and ay. For any time T}, at
the' first meridian, we have

r=2a,+4+ nein N(T,— T,)
y=y,+ncos N(T,— T,)
whence

zsin N4 ycos N= z,8in N+ y,co8 N+ n(T,— T)
—x cos N+ ysin N=— z,co8 N + y,s8in N

The last of these expressions, being independent of the time, is
constant. If we denote it by x; that is, put

x=—2,08 N+ y,8in N=—xcos N+ ysin N (5:2)

we shall find from the two expressions
xr + yy = %x + [x,8in N + y,co8 N + n (T, — T)] (573)
This equation shows that the quantity y/zz + yy, which is the
distance of the axis of the shadow from the centre of the earth,

can never be less than the constant x, and it attains this minimum
value when the second term vanishes, that is, when

z,8in N + y,cos N+ n(T,— T)) =0
and hence when
T,=1T, —% (xy8in N 4 y,cos V) (579)
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where we have multiplied by & to reduce to seconds. The unit
is either one second of mean or one second of sidereal time,
according as 7 is in mean or sidereal time. If the former, we
take h = 3600; if the latter, A = 3610.

833. The transformations of the preceding article have led us
to an expression in which the corrections a7}, ax, an, and aee are
all constants for the earth generally, and which, therefore, have
the same values in all the equations of condition formed from
the observations in various places. But a still further transform-
ation is necessary if we wish the equation to express the rela-
tion between the longitude and the corrections of the Ephemeris,
80 that we may finally be enabled not only to correct the longi-
tudes, but also the Ephemeris.

Bince aT), ax, an are constant for the whole eclipse, we can
determine them for any assumed time, as the time 7] itself. For
this time we have

zsin N4 ycos N=0

xcos N+ ysin N=x

arsin N + aycos N= —naT,
— ax cos N + aysin N = ax

(578)

The general values of z and y (482) may be thus expressed:

X Y
r= —— y=.——
sinw sin ©
where
X = cos 8 8in (a — @) Y = sin & cos d — cos 8 sin d cos (a —a)

From these we deduce

aX ar AY Az

8y =gz Ytanr

A = — —_
sin=x tan

whence

Az sin N + Ay cos N = AXsin N4 AYcos N

sin &

Am
— (zsin N N) —
(z sin N 4 y cos )m”r

—AXcos N4 AYsin N
sin 7

— Az cos N 4 Ay sin N = +(zcosN—ysinN)t;%

and for the time 7 these become, according to (578),
AXsin N4+ aYcos NV
sin «
Ax:-—AXcosl.V-{-AYsinN_* ar
sin « tanxn

—nATl=
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Again, by differentiating the values of X and ¥, we have

aX = cos 3 co8 (a — a) A(a — a) — sin & 8in (a — a) as
aY = [cos & cos d + sin & 8in d cos (a — a)] ad

— [sin & sin d + cos & cosd cos (a — a)] ad

+ cos 8sin d sin (a — a) (e — a)

But for the time of nearest approach we may take @ =a and
put cos (6 — d) =1, whence

aX =cosd.a(c —a) AY=a(3—d)
so that
_Mlesm Ncosd.a(a — fz) + cos N .a(8 —d)
sln w
(579)
Ax_—cosN.cosaA(a—a)+sinN. a(d—d) e or

sin « tan=

To find an, which depends upon the corrections of z’ and ¥/,
we observe that z’ and y’, regarded as derivatives of z and y, are

of the form v
dx 1 d 1
= 3T sin= Y=34T sin=

But%and%depend upon the changes of the moon’s right
ascension and declination, which for the brief duration of an
eclipse are correctly given in the Ephemeris. The errors of 2’
and y’, therefore, depend upon those of 7: so that if we write

v=2 y=2

sinm sinxw

and regard a and b as correct, we find

Aw Axw
AY = — 1’ —— Ay — — y ——
tan = Y y,tanr:

From the equations n sin N= 2/, n cos N=y’, we have

%4

ansin N 4+ aNcos N =ar'= —nsin N.
tanx

. Am
ancos N — aNsin N =ay = — ncosN.E—a—
nrx
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whence, by eliminating aN,*

an Ar
o = 580
n tan n ( )

Since a(@ — a), A(8 — d), ar will in practice be expressed in
seconds of arc, we should substitute for them a (@ — a)sin 17,
a(8 — d)sin 17, ax sin 1’ in the above expressions; but if we at
the same time put x sin 1”” for sin 7 and tan =, the factor sin 1’/
will disappear.

To develop aL, we may neglect the error of the small term i¢
and assume aL=al. We have from (486) and (488),lby

neglecting the small term £ sin #, and putting g =1, z =

1

the following approximate expression for {: sin =
— sin' H +k
r'sinx
which gives -
AH Ax
AL—AI——;iAk—"J—x'—; (581)

Substituting the values of a7, ax, an, and al given by (579),
(580), and (581), in (577), and putting

h

y = —
nx
the formula becomes, finally,
Aw=—v[ sin Ncos dA(a — a) 4 cos N.A(6 — d)]

+v[— cos Ncos d.A(a — a) + sin N.A(d —d)] tan ¢

+v ‘}rg :bwAk]!uh}

+v[n (t+o—T1T)—= un.}—’-:grsecq.]Aw

B cosdcos (N4 &)
cos ¥

wlAee

(682)

+v[}ﬁﬁ [#(¢t4+@—T)—=xtany — Lsec 4] —

where the negative sign of zak is to be used for interior contacts.
It is easily seen that zak represents very nearly the correction

* The angle N is independent of errors in m, since tan N = %: 8o that we might
have taken AN = 0.



528 SOLAR ECLIPSES.

of the moon’s apparent semidiameter, and —A’JI—I that of the sun’s

semidiameter; and that maee is the correction of the assumed
reduction of the parallax for the latitude 90°.

834. Discussion of the equations of condition for the correetion of
the longitude and of the elements of the computation.—The longitude
o found by the equation (570), (Art. 329), requires the correction
aw of (582). If, for brevity, we put

y= 8in Ncosda(a — a) + cos Na(é — d) } (583)
8 = — cos N cos d A(a — a) -} sin Na(¢ — d)
and
o' = the true longitude,

we have the equation of condition '
o'=w -+ Ao = w — vy 4 vtany.9 4 &ec. (584)

If the eclipse has been observed at several places, we can form
as many such equations as there are contacts observed. If the
observations are complete at all the places, we can, for the most
part, eliminate from these equations the unknown corrections of
the elements, and determine the relative longitudes of the several
places; and if the ahsolute longitude of one of the places is
known, that of each place will also be determined.

.I shall at first consider only the terms involving y and &. The
quantity vy is a constant for all the places of observation, and
combines with w, so that it cannot be determined unless the
longitude of at least one of the places is known. If then we put

2 =0d+ vy a=vtan
the equations of condition will assume the form
2—a%—o0=0

Suppose, for the sake of completeness, that the four contacts
of a total or annular eclipse have been observed at any one place,
and that the values of the longitude found from the several con-
tacts by Art. 329 are w,, w,, w,, w,, We then have the four equa-
tions

[l] Q—a“?—w‘_——.o
2] 2—a;%— o0, =0
8] 2—a,#—w,=0
4] 2—a, 4 —o0,=0



LONGITUDE. 529

where the numerals may be assumed to express the order in
which the contacts are observed; [1] and [4] being exterior, and
[2] and [3] interior. In a partial eclipse we should haye but the
1st and 4th of these equations.

Since exterior contacts cannot (in most cases) be observed with
as much precision as interior ones, let us assign different weights
to the observations, and denote them by p,, p,, p,, p,, respectively.
Combining the four equations according to the method of least
squares, we form the two normal equations

[p]2—[pa]8—[po]=0

[pa] & — [paa]® — [paw] =0
where the rectangular brackets are used as symbols of summa-
tion. From these, by eliminating £, and putting

trea) — P () = P

[P]
[pe]
[paew] —*—==[pa] = @
we find (7]

from which the value of # would be determined with the weight
P. But the computation of @ under this form is inconvenient.
By developing the quantities P and ), observing that [paa] =
P’ + pal+ pal+ pal, &c., we shall find

Pt Pyt Pt Py
+ P3Py (83— a3)'+ p, py(a,— a)* + py p, (95 — a,)?
Ptpt+pst
o=" Py (2, — 8,) (0 — @) + P, Py (0, — 03) (0,— w5) + Py P, (8, — a,) (0, — )
P+ Pyt Pyt 2,
+ PPy (a3 — a5) (0, — 3) + P2 P4 (9 — 8,) (03— ©) + Py py (a5 — a,) (vy — 0,)
P+ P+ ps+ P
These forms show that if we subtract each of the equations [1],
[2), [3] from each of those that follow it in the group, whereby
we obtain the six equations
(al—a,)o-l-w,—-w,:O
(a—a)d+ o —w,=0
(@—a)d+o —w,=0
(@, — ay) % 4 “’a—‘”a=0
(@—a)d+ v, —w, =0
(ay—a)d+ov,—w, =0

Vor. I.—34
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that is, it is simply the sum of all the individual equations in &
formed for the places severally.

The same reasoning is applicable to any of the terms which
follow the term in # in (584); so that if we suppose all the terms
to be retained, this process gives an equation in # for each place,
in which besides the term P# there will be terms in ak, aH, &c.,
and from all the equations, by addition, a final normal equation
(still called the equation in &#) as before. In the same manner,
final normal equations in ak, aH, &c. will be formed. Thus we
shall obtain five normal equations involving the five unknown
quantities &, ak, aH, am, ace, which are then determined by
solving the equations in the usual manner. But, unless the
eclipse has been observed at places widely distant in longitude,
it will not be possible to determine satisfactorily the value of
am, much less that of aece. It will be advisable to retain these
terms in our equations, however, in order to show what effect an
error in  or ee may produce upon the resulting longitudes.

‘When &, &c. have been found, we find 2, £, &c. from the
equations [1], [2]....[5], [6].... The final value of £ will be
the mean of its values [1 — 4] taken with regard to the weights;
and so of £, &c. Hence we shall know the several differences
of longitude

o —"=Q o — " =02, &e.

If one of the longitudes, as for instance o, is previously
known, we have :
vr=8—do

and hence all the longitudes become known.

Finally, from the values of y and & the corrections of the
Ephemeris in right ascension and declination are obtained by
the formuls '

cos 3a(a — a) = sin N.r—c?s N.# } (586)
A(3—d)=cosN.y+sin N.¥

835. When only two places of observation are considered, one
of which is known, it will be sufficiently accurate to deduce y
and & from the observations at the known place (disregarding
the other corrections), and to employ their values in finding the
longitude of the other place.
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and y’ for the time ¢t 4+ w. Compute the auxiliaries m, M, &c.
by the formulse*

men M =z, — & nsin N =2/
mcos M=y, —y ncos N=y
sin § = ol — ) (“Z’—N)

where 4 is (in general) to be so taken that L cos 4 shall be
negative for a first and positive for a last contact (but in certain
exceptional cases of rare occurrence see Art. 330).

Then
I hLcosy  hmcos(M— N)

n n

or, when sin 4 i8 not very small,
. _hkm sin(M — N —43)
T on sin ¢

If the local mean time ¢ was observed, take A = 8600 in these
formulee, and then the (uncorrected) longitude is found by the
equation

W = T:) —t + T

If the local sidereal time ux was observed, take A = 3609.856,
in the preceding formulee ; then, g, being the sidereal time at the
first meridian corresponding to 7;, we have

o=p —p-trT

The longitudes thus found will be the true ones only when
all the elements of the computation are correct.

IV. To form the equations of condition for the correction of
these longitudes, when the eclipse has been observed at a suffi-
cient number of places, compute the time 7} of nearest approach,
and the minimum distance %, by the formule

T = ﬂ—%—(x,sinN—}-y,cosN)
x = —x,c08 N + y,8in NV

* The values of .V and log n being nearly constant, it will be expedient, where
many observations are to be reduced, to compute them for the several integral hours
at the first meridian, and to deduce their values for any given time by simple
interpolation.
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For these places we have given—

Lat. ¢ Long.
Washington, - 38° 53’ 89".25 + 5 8=11.2
Konigsberg, + 54 42 50 4 —122 04

The longitudes are reckoned from' Greenwich. That of
Konigsberg will be assumed as correct, while that of Washington
will be regarded as an approximate value which it is proposed
to correct by these observations.

I. The mean Greenwich time of conjunction of the sun and
moon in right ascension being, July 28, 2* 21 2.6, the general
eclipse tables will be constructed for the Greenwich hours 0%, 1%,
2, 8, 4%, and 5* of July 28. For these times we find the follow-
ing quantities from the Nautical Almanac :

For the Moon.* .

-Gmntvivlil?: mean o 3 .
- July 28, 0 125°40 6".75 |4 20° 3'30”.00| 60’ 27".30
-1 126 19 9 41 19 58 9 .36 28 .41
2 | 126 5810 .80 | 19 52 39 .99 29 49
3 127 3710 .82 19 47 1 .92 30 .54
4 128 16 9 .37 | 19 41 15..21 31 .56 -
5 128 °55 6 36| .19 385 19 .89 -82 .56
For the Sun.
Green:;:: mean o & log ¥
July 28, 0 1272 €' 5".25 | 4-19°5'24".70 0.00'6578
1 8 32 .63 4 50 .28 76
2 10 59 .99 415 .74 74
3 13 27 .34 3 41 .21 72
4 15 54 .67 3 6 .64 70.
5 18 21 .99 2 32 .05 67

* The moon’s a and d in the Naut. Alm. are directly computed only for every noon
and midnight and interpolated for each hour. I have not used these interpolated
values, but have interpolated anew to fifth differences. The moon’s parallax has
been diminished by 0”.8 according to Mr. Apans’s Table in the Appendix to the
Naut. Alm. for 1856.
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‘With these values we form the following tables, as in Art. 297:

Exterior Contacts. Interior Contacts.
a d
! log 1 logs
0 [127° & 177.22| 19° 5/ 16".66 | 0.584046 | 7.663244 |— 0.011771 ] 7.661131
1 88951 442.76 4028 45 11795 2
2 11 1.78 4 8.96 3978 47 11844 8
3 13 24.03| 8 85 .14 3899 19 11917 3
- 4 16 46 .27 8 1.30 8801 51 12015 38
5 18 8.50] 2 27 .46 3679 53 12187 40
s a, a | & } y s, a | 4
0* | —1.838900 +0.968589
1 | —o.760366 | +0.069684 |, o l -886569|— °'°83°2°1
8 -569591 —58 1083384 12
2 | —0.199775 691 T 7y -802185 —85o[ 113
2 ) 1669590 1 54 1083786 +
+ 0.369815 590 |~ g5 718449 —343
1569535 —64 490 084079 42
4 | ¥ 0939360 Seocss |- .634370| 034078134
5 | + 1.608766 . 549050 -

Hence the mean changes z’ and y’, for the epoch T, = 2* (ac-
cording to the method of Art. 296), and the corresponding values
of N and log n, are as follows:

z

y N

log »

0| -+ 0.569563

—0.083202 | 98° 18 39".7 | 9.760126

1 591 3384 19 42 .7 168
T,=2 600 3562 20 45 .3 194
3 590 3736 21 47 5 205
4 563 3908 22 50 .0 203
5 514 4078 23 52 .7 l_SﬁJ

II. The full computation for Konigsberg, where both exterior
and interior contacts were observed, will serve to illustrate the

use of the preceding formulw in every practical case.
For ¢ = 54° 42’ 50"".4 we find

log p sin ¢’ = 9.909898

log p cos ¢' = 9.762639

The sidercal time at Greenwich mean noon, July 28, was
8 22~ 18,27, with which g is found as given below. The com-
putation of &, 7, and L will be as follows:




t+ e

I

4 (in are)
Fort 4o, a
[ d
p—a

log sin (4 — a)
log 008 (4 — a)
log §

§

log 4 sin B
log A cos B
B

B—d
log 4

log sin (B — d)
log cos (B — d)
log 7

n

log ¢

Fort4 o, logi
(1 [ l
i

L
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1st Ext. Cont. 1st Int. Cont. 24 Int. Cont. 24 Ext. Cont.
84 38m 1008 | 4488m57.6 | 40 4Im54.2 | 5r38m 329
216 104 | 8 16 57.2 | 8 19 63.8 | 4 16 82.5

12 0 46.44(18 1 483.22|18 4 40.81 |14 1 28.31
180° 11’ 86”.6 | 195° 25’ 48”.3 | 196° 10’ 4~.7 | 210° 22’ 4.7
127 11 40.1 127 14 4.2|127 14 11.2]127 16 25 .6
19 869.8| 19 825.6| 19 828.9| 19 262.0
52 59 56.56| 68 11 44.1| 68 55 68.5| 83 6 39.1
9.902848 9.967762 9.9699562 9.996838
9.779478 9.569889 9.565679 9.080040
9.664982 9.780401 9.732591 9.759477
+ 0.462862 | 4 0.587528 | -+ 0.540244 | 4 0.574748
9.909898 9.909898 9.900898 9.909898
9.542112 9.332528 9.318318 8.842679
66° 47 827.2 | 75° 10’ 40”.4 | 75° 88" 5.9 | 85° 6’ 14".8
47 4332.4| 66, 7T 14.8| 56 84 42.0| 66 3 22.8
9.946544 9.924595 9.923693 9.911486
9.869192 9.919191 9.921499 9.960919
9.827809 9.746201 9.740991 9.608355
9.815736 9.843786 9.845192 9.872406
+ 0.654239 | 4 0.697888 | - 0.700152 | -+ 0.745427
9.774853 9.670796 9,664684 9.519841
7.668248 7.661187 7.661187 7.668252
4 0.583956 | — 0.011940 | — 0.011944 | 4 0.533772
+ 0.002789 | 4 0.002148 | 4 0.002117 | + 0.001524
+ 0.531217 | — 0.014088 | — 0.014061 | -+ 0.532248

IIT. The epoch of the table of z’ and y’ being T;= 2*, we have

for this time

z, = — 0.199775

¥, = -+ 0.802185

with which we proceed to find the values of w.

mein M =zy— §
mcosM—=y,—7
log m sin M
log m cos M

M
log m
N
log n
M—N

log sin (¥ — N')

Fort 4 o,

““ .

— 0.662137
+ 0.147946
n9.820948
9.170107
2820 35’ 42".8
9.831527
980 21’ 2.1
9.760198
184° 14 40”.7
n8.869321

— 0.737303
+ 0.104297
n9.867646
9.018272
278° 3 5".4
9.871949
98° 22 5".1
9.760206
179° 41’ 0.3
7.742363

— 0.740019
+ 0.102033
n9.869242
9.008741
277° 61’ 1.6
9.873331
98° 22’ 8".2
9.760206
179° 28’ 53.3
7.956643

— 0.774623
+ 0.056758
n9.889085
8.764027
274° 11’ 28".3
9.890198
98° 23’ 7.3
9.760200
175° 48’ 21".0
8.864135
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log L

log sin §

¥

M—-N—Y
logsin (M —N—4)
h =28600, logh
log v

T

T,—¢
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9.725272
n8.976576
185° 26' 27".7
358 49 18.0
- 1n8.818626
8.566308
2.965682
+ 0A15m 241.0
—138 10.8

n8.148849
n9.4656463
343° 1’ 8”.6
196 39 61 .7
n9.45675626

8.660109
+ 1416m 1220
—2 88 67.6

n8.148016

n9.681958
208° 44' 14”.0
380 44 39 .3

n9.689061

8.676521
+ 1019~ 8.1
—2 41 54.2

9.726114
9.028219
6° 7°33".2
169 40 47 .8
9.253208

3.911290
4 2A16m52.5
— 838 829

[~

—122 46.8!—1 22 46.6i

— 122 46.1| —1 22 40.4

IV. Equations of condition.—To find 7, and x, we have for

L I,= 2
— log z, = n9.3006 N = 98° 20".7
log y, = 9.9043 log n = 9.7602
whence
z, sin N
— "T = 4 0.3434 —x,co8 N = — 0.0290 log H = 2.9822
_%"%N_= 402028  y8in N=+ 07938 logr =— 0.0066
T — 205457 x =+ 07648 logr = 8.559
= 8630 logx— 98835 log ,JL = 9.4157
LY
— Jog PEIN _ — log X — 0.2362
log 8= log I—e = 9.9128 log v = log e _‘0.-36.

‘With these constants prepared, we readily form the coefficients

of the equations of condition as follows:

1st Ext. Cont. 1st Int. Cont. 2d Int. Cont. 24 Ext.Cont.
logtan 4 | 8.9775 | n9.4848 9.7390 9.0807
log sec ¥ n0.0019 0.0194 n0.0671 0.0025
viang | +0168 | —0.52 | 40944 | 40185
veecy | —1780 | +1.801 | —1964 | 41788
{4 o—T,| — 062762 | 4 0A7855 | 4 O~7860 | 4 127800
log (t +0—T,) | n9.4412 9.8666 9.8964 0.2380
wn(t+o—T)| —02789 | 407205 | 407795 | 4 1715
—xvtany| —0.1251 | 4+ 04028 | —8.7228 | — 0.1414
— ey | + 04506 | —0.4601 | 405117 | — 04512
rmw
E| £ 00516 | +0.6627 | + 0.5689 | + 1.1220
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1st Ext. Cont. | 1st Int. Cont. 24 Int. Cont. 2d Ext. Cont.
vn(t+ o—T)) | —0.2789 -+ 0.7295 + 0.7796 -+ 1.7165
— xvtany | — 0.1251 + 0.4023 — 0.7223 — 0.1414
— Lvseoy | + 09192 | 40.0254 | — 0.0276 | — 0.9222
+0.5202 | 411672 | + 0.0206 | + 0.6519
log 9.7162 0.0634 8.4718 9.8142
log $38|  9.5246 ,
log 18t part of F 9.2408 9.6880 7.9959 9.8388
N 4§ | 283°46'.2 81° 21'.8 807° 4.9 104° 28'.8
log cos (N + §) 9.8766 9.1766 9.7803 n9.8978
log (— vBcosdsecy) | 0.1264 70.1439 0.1816 0.1270
log 2d part of ¥ 9.6030 n9.3205 9.9619 9.56248
st part of F/| 4 0.1741 | 4 0.8878 | 4 0.0099 | + 0.2182
2d « « F| 4 0.8184 — 0.2092 + 0.9160 + 0.3849
F| 404926 | 4 0.1781 | 4 0.9269 | + 0.5531

Putting o’ + vy = 2, we have, therefore, for the four Konigs-
berg observations, the equations

?
1| 9=—1% 227468 1-0.1639 —1.780wak—1.780 2 | 0.062 A 4-0.498 raee
T
(A)j2| @=—1 22 45.6—0.626 —1.801 +41.801  -+0.668 0.178
2| @=—1 22 46.140.944 41.964 —1.964 0.569 40.926

1| 8=—1 22 40.44-0.185 41788  +1.788 +1.128 4 0.558

where we have annexed a column for the weight p, gmng
interior contacts double weight.

A similar computation for the two observations at Washington
gives the following equations, in. which €' = o'’ + vy, o'’ de-
noting the true longitude of Washington:

P
(B)|1| =577 29.9+ 1.660 9 —2.802wak — 2892ﬁi’_2681mr+o722n¢e
1| @=617 21.9—2406 2959 42959 0509 —1.328

More observations would be necessary in order to determine
all the corrections; but I shall retain all the terms in order to
illustrate the general method. Subtracting each of the Konigs-
berg equations from each of those which follow it, we obtain the
six equations,
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z
S

P
}| 0=+ 172 — 0.689 9 — 0.071 mak - 8.531 .A'Ji’ + 0.611A7 — 0.8157Ae
}{0=40.740781 8694 —0.284 4 0.517 4 0.438

@)} 0=+6.440022 48468 138468 1071 4 0.000
3{0=—0.5+1470 48765 —8765 —0094 4 0.748
| 0=45.240711 4853 —0.068 0460 - 0.375
$}l0=+45.7—0759 —0281 48697 4 0.664 — 0.378

where the weight in each case is the quotient obtained by
dividing the product of the two weights of the equations whose
difference is taken, by the sum of the weights of the four
original equations (Art. 334). .

" The same method, applied in the case of the two Washington
equations, gives the single equation

Id

(®)1

0 = — 8.0 — 4.0669 - 5.851 xak + 6.851 “HE + 8.190 Ar — 2,05 7Aee

From the equations (A’) and (B’) are formed the following
final equations, having regard to their weights, in the usual
manner:

0= + 16.495 + 10.426 % — 5.300 Ak — 16.377 A_H’f — 6.609A7 - 5.281 maee
0=—12.445 — 5800 - 84506 -+ 6.185 4 10.040 — 2,675
0—— 8191 —16.377 + 6.185 - 84.506 -+ 10.740 — 8214
0=— 0371 — 6.600 -+ 10.040  + 10.740 + 5.672 — 3.316
0=+ 7.951 + 5281 — 2675 — 8214 — 8.316 - 2.675

As we cannot expect a satisfactory determination of ax and =ac¢
from these observations, we disregard the last two equations,

: . . H,
and then, solving the first three, we obtain &, wak, and%—m
terms of ax and wace, as follows:

% =-—4".36 4 0.375 ar — 0.525 =aee

mak =40 .02 —0.216 ar — 0.004 =ace

%‘t: 1 .83 —0.095 ax — 0.010 race

These values substituted in the equations (A) give

Q= — 1% 22= 44+.38 4 0.651 ar - 0.432 race
Q=—1 22 46.64+4 0684 -+ 0.443
Q= —1 22 46.58 1 0.685 - 0.442
2=—122 443440653 4 0.432
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the mean of which, giving the second and third double weight, is
am Q— — 1> 22" 4586 4 0.674 ax 4 0.439 race

The equations (B) become

2 = 5 7= 26°.99 — 1.314 axr — 0.116 =aee
=57 27.03 —1314 —0.101

the mean of which is
(B @ — 5 7= 27°.01 — 1.314 ar — 0.109 zace

Now, if we assume the longitude of Konigsberg to be well
determined, we have

8=0o fvy—=—1222%04 vy
which, with the equation (A"’), gives
vy = — 45°46 + 0.674 ax + 0.439 race
Hence, by (B”’), the true longitude of Washington is
o= Q — yy = 5* 8" 12:4T7 — 1.988 an — 0.548 naee

If the longitude of Washington were also previously well estab-
lished, this last equation would give us a condition for deter-
mining the correction of the moon’s parallax. Thus, if we adopt
o''= 5 8~ 12°.34, which results from the U.S. Coast Survey
Chronometric Expeditions of 1849, '50, ’51, and ’55, this equation
gives

0= +4 0.13 — 1.988 ax — 0.548 race

whence .
an = +4 0”.07 — 0.276 =aee

The probable value of ace, according to BESSEL, is within
=+ 0.0001, so that the last term cannot here excced 07.10. If,
therefore, the above observations are reliable and the supposed
longitudes exact, the probable correction of the parallax indi-
cated scarcely exceeds 0’’.1, a quantity too small to be established
by so small a number of observations. Nevertheless, the example
proves both that the adopted parallax is very nearly perfect, and
that a large number of observations at various well determined
plages in the two hemispheres may furnish a good determination
of the correction which it yet requires.



542 LUNAR ECLIPSES.

Finally, the corrections of the Ephemeris in right ascension
and declination, according to the above determination of y and
¥, are found by (686) to be (putting a’ for a and &’ for d)

(e — a') = — 28”42 4 0.469 ar 4 0.187 =aee
A8 —d¢)=— 0 48 4 0.314 an — 0.556 wace

This large correction in right ascension agrees with the results
of the best meridian observations on and near the date of this
eclipse. Since that time the Ephemerides have been greatly
improved by the use of HaNseN's new Tables of the Moon.

LUNAR ECLIPSES.

338. To find whether near a given opposition of the moon and sun
Fig.45. @ lunar eclipse will occur.—The solution of this prob-
lem is similar to that of Art. 287, except that for
the sun’s semidiameter there must be substituted the
4 apparent semidiameter of the earth’s shadow at the
distance of the moon; and also that the apparent
distance of the centres of the moon and the shadow
will not be affected by parallax, since when the
earth’s shadow falls upon the moon an eclipse occurs
for all observers who have the moon above their
B ? horizon. If S, Fig. 45, is the sun’s centre, E that
¥ of the earth, LM the semidiameter of the earth’s
shadow at the moon, we have

4 Apparent semidiameter of the total
shadow = LEM
= BLE—EVL
= BLE — (AES— EAY)
=x—¢ + L4

where we employ the same notation as in Art. 287.

But observation has shown that the earth’s atmosphere
increases the apparent breadth of the shadow by about its one-
fiftieth part:* so that we take

* This fractional increase of the breadth of the shadow was given by LANBERT a8
7% 8nd by MAYER a8 ;. Bekr and MApLeR found 5 from a number of observations
of eclipses of lunar spots in the very favorable eclipse of December 26, 1833. See
“ Der Mond nach seinen kosmischen und individuellen Verhiltnissen, oder allgemeine
vergleichende Selenographie, von WiLHELM BEER und DR. JouaNN HEINRICH MADLER,”
¢98.
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App. semid. of shadow = % (r—d+7) (587)

In order that a lunar eclipse may happen, we must have,
therefore, instead of (477),

ﬁcosI’<%(x—s’+ ¥)+ 8 (588)
or, taking a mean value of I’, as in Art. 287,
p<[% (x—&+ x’)-{-—s]x 1.00472
Employing mean values in the small fractional part, we have
51 %
[5 (r— ¢+ ) + s])( 00472 = 16
and the condition becomes
p<% x— &4 @) 4 8 + 167 (589)

If in this we substitute the greatest values of z, z/, and s, and
the least value of &', the limit

B < 63' 53"

is the greatest limit of the moon’s latitude at the time of opposi-
tion for which an eclipse can occur.

If we substitute the least values of z, #’, and s, and the greatest
value of &/, the limit

B< 52 4"

is the least limit for which an eclipse can fail to occur.

Hence, a lunar eclipse is certain if at full moon 3 < 52’ 4/,
impossible if 3 > 63’ 53'’, and doubtful between these limits. The
doubtful cases can be examined by (589), or still more exactly
by (588), employing the actual values of =, #/, s, &/, at the time,
and computing I’ by (475).

These limits are for the total shadow. For the penumbra we
have

App. semid. of penumbra = -2—;- =+ 8+ 7) (690)
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so that the condition (588) may be employed to determine
whether any portion of the penumbra will pass over the moon,
by substituting 4+ s’ for — ¢’. It will be worth while to make
this examination only when it has been found that the total
shadow does not fall upon the moon.

839. To find the time when a given phase of a lunar eclipse will
Fig. 46. occur.—The solution of this problem may be
P derived from the general formule given for
solar eclipses, by interchanging the moon and
earth and regarding the lunar eclipse as an
eclipse of the sun seen from the moon ; but the
following direct investigation is even more
simple.

Let S, Fig. 46, be the point of the celestial
sphere which is opposite the sun, or the appar-
ent geocentric position of the centre of the

earth’s shadow; M, the geocentric place of the centre of the
moon ; P, the north pole. If we put

o = the right ascension of the moon,
o’ = the right ascension of the point S,
= R. A. of the sun 4 180°,
8 = the declination of the moon,
8’ = the declination of the sun,
@ = the angle PS.M,
L = SM,
we have
— 3'= the declination of S,

and the triangle PSM gives

sin L sin Q = cos 8 sin (a — o) } (591).
sin L cos @ = cos &’ sin & 4- sin 8’ cos & cos (a — a')

The eclipse begins or ends when the arc SM is exactly equal to
the sum of the apparent semidiameters of the moon and the
shadow. The figure of the shadow will differ a little from a
circle, as the earth is a spheroid; but it will be sufficiently accu-
rate to regard the earth as a sphere with a mean radius, or that
for the latitude 45°. This is equivalent to substituting for = in
(587) and (590) the parallax reduced to the latitude 45°, which
may be found by the formula
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=, = [9.99929] = ' ' (592)

where the factor in brackets is given by its logarithm.
Hence the first and last contacts of the moon with the pe-
numbra occur when we have

L=%(R,+.¢+n’)+s (598)
For the first and last contacts with the total shadow,

L=2—z(xl—s’+1r’)+a (594)
For the first and second internal contacts with the penumbra,

I/=%(ﬂ,+s’+ %)—s (595)

For the first and second internal contacts with the total shadow,
or the beginning and end of total eclipse,

51
L=25(n—¥¢+n)—s (596)

The solution of our problem consists in finding the time at
which the equations (591) are satisfied when the proper value of
L is substituted in them. A very precise computation would,
however, be superfluous, as the contacts cannot be observed with
accuracy, on account of the indefinite character of the outline
both of the penumbra and of the total shadow. It will be suffi-
cient to write for (591) the following approximate formulee, easily
deduced from them:

L sin @ = (a — a") cos 8
LoosQ=34 o— HnZisinile—a) } ¢
sin 1”
Let us put
c— sin 24 8in*} (a — o)
- sin 1”

Z = (a —a')cos (598)
y= 3 + [ —

a’, ¥ = the hourly increase of z and y,

then, if the values of « and y are computed for several successive
Vo I.—35
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hours near the time of full moon, we shall also have z’ and y’
from their differences; and if z, and y, denote the values of z
and y for an assumed epoch 7;, near the time of opposition, we
shall have for the required time of contact 7'= T, r the
equations

Lsin@Q==zx,+ 2

Les@Q@=y,+yr
from which r is obtained by the process already frequently

employed in the preceding problems. Thus, computing the
auxiliaries m, M, n, N, by the equations

mind—n b Nes m
we shall have
sin.."___msm(‘JIL[—N)
f___Lcos.y_mcos(M—N) (600)
n n
T=T,+r~

in which we take cos 4 with the negative sign for the first contact
and with the positive sign for the last contact.

The angle Q=N+ 4 is very nearly the supplement of the
angle PMS, Fig. 46; from which we infer that the angle of posi-
tion of the point of eontact reckoned on the moon’s limb from the north
point of the limb towards the east = 180° + N + .

The time of greatest obscuration is found, as in Art. 324, to be

m cos (M — N)

T1=T0_ n

(601)

which is also the middle of the eclipse.
The least distance of the centres of the shadow and of the
moon being denoted by 4, we have, as in Art. 324,

d=+msin(M—DN) (602)
the sign being taken so that 4 shall be positive. If then we put

D = the magnitude of the eclipse, the moon’s diameter being
unity,
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L—4
2s
in which the value of L for total shadow from (594) is to be
employed.

The small correction ¢ in (598) may usually be omitted, but
its value may be taken at once from the following table:

D =

547

(603)

Value of e.
a—a'
4
(14 1000” 2000” 8000” 4000” 5000” 6000”
00 oll 0" 0" 0" 0” Oll OH
5| 0 0 1 2 3 5 8
10 0 0 2 4 7 10 15
15 0 1 2 6 10 15 22
20 0 1 3 7 13 19 28
25 0 1 4 8 15 23 33
30 0 1 4 9 17 26 38

The quantity ¢ has the same sign as 4, and is to be subtracted
algebraically from & + 4’
ExampLe.—Compute the lunar eclipse of April 19, 1856. The

Greenwich mean time of full moon is April 19, 21* 5~.5. W

>

e

therefore compute the co-ordinates z and y for thé Greenwich
times April 19, 18, 21*, 24*,

Y R.A.

O R.A 4 180° =’

e — G’

a — o (in arc)
) Decl. = ¢
(0] =0
—_

y

log (s — a')
log cos ¢

log

18 21» 244
13* 46 36+.62| 1352~ 9+81) 13* 57~ 4512
13 52 52.98| 13 53 20.93| 13 53 48.88
— 61636 — 1 11.12] + 3 56.24
— 5645 | —1067" 4+ 3544”
—11°27 072 |—12° 6'48".7 |—12°46' 5".5
+11 3549 4 |411 3822 8 411 40 56 .6
+ 13. 0. |+ 6.
+ 542 |— 1701”7 |—  3903”
n3.75166 13.02816 3.54949
9.09127 9.99022 9.98913
n3.74293 n3.01838 8.53862
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Hence we have the following table :

7
.z i, ‘ y ‘ =mg;./ l
18*|—5538"| - + 542
T4 5 1 1498 —243 |y 741\
21 | 1048 | | 4409 + — 1701 | _ 5000 |¥
24 |+ 3456 3903 l
To find L, we have, by (593) and (594),
n =54 82" = — 3267”
8 = 957
. = 9 _
ﬂl—sl+7l"=2319 1rl+8’+1r’=4233"
S m—8 4 )= 46 fo(m+d+7)= 8
s= 891 s—= 891
L for shadow = 8256 L for penumbra = 5209

Assuming the time 7, = 21*, we proceed by (599) and (600):

z,=msin M| — 1043 ' =nsin N| 4 1498
yy=mcos M| — 1701 yYy=ncosN| — 741
M 210° 81'.0 N 116° 192
log m 3.3000 log n 3.2230

— ?cos (M — N) = + 02108
T,= 21
T, = Time of middle of eclipse= 21 .108

Shadow. Penumbra.

log sin § 9.7855 9.5815
L o VI £ a2 + 20881
T, 21 .108 21 .108
Beginning 19 .566 18 .227
End ] 22 .650 23 .989

For the magnitude of the eclipse, we have, by (602) and (603):
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341. To find the longitude from an observed occultation of a star by
the moon.—According to the method of Art. 829, we proceed as
follows :

I. Find, approximately, the time of conjunction of the moon
and star in right ascension, reckoned at the first meridian. Take
from the Ephemeris, for four consecutive integral hours, two
preceding and two following the time of conjunction, the moon’s
right ascension (a), declination (), and horizontal parallax ().
Take also from the most reliable source the star’s right ascension
(@) and declination (d”).

For each of these hours compute the co-ordinates z and y by
the formuls

__cosdsin(a — a’)

T sinx

__8in (8 — 8’) cos’ § (a — a') + sin (3 4 8’) 8in’ § (a — a')
y= sin =

and, arranging their values in a table, deduce their hourly
variations z’ and y’ for the same instants for which z and y have
been computed.

II. Let u be the local sidereal time of an observed immersion
or emersion of the star at a place whose latitude is ¢, and west
longitude w; ¢ the corresponding local mean time. The co-or-
dinates of the place are to be computed by the formule

A sin B = p sin ¢’ & = pcos ¢'sin (u — a)
A cos B = p cos ¢' cos8 (u—a') » = A sin (B —3")
{=Acos(B—2¢')

‘When log ¢ is small, add to logs § and » the correction for
refraction from the table on p. 517.

III. Assume any convenient time 7; reckoned at the first
meridian, 8o near to ¢ + o that z and y may be considered to
vary proportionally with the time in the interval ¢ + w — T,
For the assumed time, take the values of z and y (denoting them
by x, and y,), and also those of 2’ and y’, and compute the aux-
iliaries m, M, &c. by the formulse
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mein M =x, — & n sin N = «’
mcos M =y, —y ncosN=y
sin +=%‘N> log .. = 9.435000%

where 4 is (in general) to be so taken that cos + shall be nega-
tive for immersion and positive for emersion (but in certain
exceptional cases of rare occurrence, and of but little use in
finding the longitude, see Art. 830). Then

?_hkcosq, hm cos (M — N)
— T a n

or, when sin v is not very small,

_ hm sin(M — N —4)
= 8in 4

If the local mean time ¢ was observed, take 2 = 8600 in these

formule, and then the longitude will be found by
w = 7'0 —t + T

But if the local sidereal time u was observed, take A = 8609.856
in the preceding formulee ; then, g being the sidereal time at the
first meridian corresponding to Tp,
_ w=up —u+r

The longitude thus found will be affected by the errors of the
Ephemeris.

IV. To form the equations of condition for correcting the
longitude for errors of the Ephemeris when the occultation has
been observed at more than one place, compute the auxiliaries.

ﬂ:ﬂ—%(x,sinN—}—y.cosN)
x=—2z,c08 N+ y,8in V
3

y = —

nr

the same value of & being used as before.

* According to OUDEMANS (Astron. Nach., Vol. LL, p. 80), we should use for ocoul-
tations k — 0.27264, or log £ — 9.4355690, which amounts to taking the mooun’s
apparent semidiameter about 1”.25 greater in occultations than in solar eclipses.
But it is only for the reduction of isolated observations that we need an exact value,
since, when we have a number of observations, the correction of whatever value of
k we may use will be obtained by the solution of our equations of condition.
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1850 April 15. a [ L
6* 65° 56’ 217.16 | 4 16° 40’ 0”.05 58’ 55”.22
7 66 32 32 .06 16 46 30 .53 58 55 .87
8 67 846 .02 16 52 54 .77 | 58 56 .49
9 67 45 3 .02 16 59 12 .76 | 58 57 .10

"The position of Aldebaran for the same date was
o’ = 66° 49’ 33".9 ' 3= + 16° 12’ 1".7

Hence, by L. of the preceding article, we form the followin
table: E

Gr.T. z z Yy Yy

6 | —0.86519 | 4 0.58849 | 4-0.47664 | - 0.10871

7 —0.27671 _ 47 58531 63
8 -+ 0.31176 42 .69390 56
9 -+ 0.90014 32 .80243 48 |

II. The sidereal time of Greenwich Mean Noon, April 15,
1860, was 1* 33~ 8.96. With this number, converting the
Konigsberg times into mean times for the sake of uniformity, we
find

Cambridge. Kinigsberg.

Immersion. Emersi I rai Emersion.

t| 20 1m52:.45| 3 1m 3835 9*23™ 156°.64| 10* 13m 11.88-
t4+w| 6 46 22.45/ 7 46 8.35| 8 1 15.24 8 651 10.98
p | 64° 2' 2".65| 69° O 58”.85||164° 25’ 54”.90|176° 56’ 54”.00
p—a |347 12 28 .65 2 11 24 .45 97 86 21.00(101 7 20.10

. log psin ¢’ 9.826441 9.909898
" logpcosy | 9.869121 9.762639
log £ | n9.214324 8.451362 9.758801 9.735287
logn | 9.646085 9.641159 9.904038 9.922176
log | 9.944427 9.952794 9.185091 8.549725

The value of log £ has been found in order to find the correc:
tion for refraction. This correction is here quite sensible in the
case of the Konigsberg observations which were made at a great
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zenith distance. By the table on p. 517, we find that the logs-
rithms of ¢ and » must be increased by 0.000006 for immersion,

OCCULTATIONS OF FIXED STARS.

and by 0.000041 for emersion.

values of the co-ordinates are as follows:

Applying these corrections, the

£ —0.16880 | - 0.02827 || 4 0.57386 | -} 0.54366
7| 4044266 | 4 0.43768 || 4+ 0.80175 | -+ 0.83602
III. Assuming convenient times not far from ¢ + w, we have
Assumed T 6r.8 7.8 8.0 8.85 |
7| —0.80440 | 4 0.19406 | -+ 0.81176 | - 0.81188
; ve| +0.56868 | 067218 | 4 0.69890 | 4 0.78615
rg—§=msin M | — 0.28460 + 0.16679 — 0.26210 -+ 0.26822
Yo—n=mcos M | 4012092 | - 0.28450 || — 0.10785 | — 0.04987
M |297° 40’ 16”.5 | 856° 15’ 36”.1 |{247° 88’ 17.0 {100° 31’ 57".T
log m 9.415608 9.4568164 9.452438 9.4385871
Y—nsin N | -+ 058847 | 4 0.58843 || L 0.58842 | 4+ 0.58836
y'=ncosN | - 0.10866 | -+ 0.10857 + 0.10856 | -} 0.10849
N | 79° 82 21”1 | 79° 82 46".8 || 79° 82 48".5 | 79° 33 85
4 [216 11 85.9 (812 83 59.0 |[167 85 28.56 | 21 1 28.1
(A = 8600) r — 89074 — 12882 — 6863 — 352
@ | 40 44m 37.81| 45 44™ 120,83/ — 14 22m 70.01|—14 22= 4.9

IV. For the equations of condition, taking 7,= T».8,

T, =

2772

x = + 0.6258

and putting

log

= = 3536"
v = 0.2308

w, == the true longitude of Cambridge,

’
1 =

w

€«

“«

we find, neglecting terms in aee,

Konigsberg,

w, = 4443781 —yy 4 12458 — 2.108 zak — 1.293 ax
w = 4 44 12.83 —yy — 1.852 ¢ 4 2.515 nak 4 1.660 ax
o'=—122 7.01 —vy— 03748 — 1742 zak 4 0.991 ax
w'=—1 22 14.90 — vy + 0.654 ¢ 4 1.822 =ak 4 1.195 a=

whence the two equations

0 = 4 24°.98 4 3.097 8 — 4.623 =ak — 2.953 ax
0=+ 7.89 —1.0288 — 3.564 nak — 0.204 ax

If we determine & and mak in terms of aw, these equations give

8 = — 3".33 4 0.607 ax
rak = 4+ 8 .17 — 0.282 an
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and then we find

o = 4*44"26'98 — vy — 0.048 ar
o'=—1 22 11.29 — vy 4 1169 ax

1

Assuming o,/= — 1* 22" (*.4 as well determined, the last equa-

tion gives
vy = — 10-.89 4 1.169 ar

which substituted in the value of w, gives
w, = 4% 44 3787 — 1.217 ax

Finally, adopting the correction of the parallax for this date as
given in Mr. Apams’s table (Appendix to the Nautical Almanac
for 1856), ar = + 5.1, this last value becomes

w, = 4" 44= 3166

which agrees almost perfectly with the longitude of Cambridge
found by the chronometric expeditions, which is 4* 44 81°.95.
‘With the same value of ar we find

r=—2".90 4 =—0"23 rak = + 1”7.99

and hence, by (586), the corrections of the Ephemeris on this
date, according to these observations, are

A(s —a') = — 2".93 A — 3= —0".77

The value mak = 4 17.99 gives ak = 0.00056, and hence the
corrected value k£ = 0.27227 + 0.00056 = 0.27283, which is not
very different from OuDEMANS’S value. (See p. 551).

842. When a number of occultations have been observed at a
place for the determination of its longitude, it will usually be
found that but few of the same occultations have been observed
at other places. If, then, we were to depend altogether upon
corresponding observations at other places, we should lose the
greater part of our own. In order to employ all our data, we
may in such case find for each date the corrections of the moon’s
place from meridian observations (see Art. 235), and, employing
the corrected right ascension and declination in the computation
of z and y, our equations of condition will involve only terms in
wak and arx. The value of ax will, however, be different on
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different dates, and, therefore, if we wish to retain this term, we
must introduce in its stead the correction of the mean parallax
which is the constant of parallax in the lunar tables. If this
constant is denoted by 7, we shall have, very nearly,

ar=1a
T = ;o ﬂn
where 7 is the parallax for the given date. The equations of

condition will then be of the form

w=w-+4a.zak 4+ b.an,
where
k.4

a=vsecy b=—FE

%o

In HanseN’s Lunar Tables, now employed in the construction of
our Ephemeris, 7,= 3422’".06.

343. The passage of the moon through a well determined
group of stars, such as the Pleiades, affords a peculiarly favorable
opportunity for determining the correction of the moon’s semi-
diameter as well as of the moon’s relative place, of the relative
positions of the stars themselves, and also (if observations are
made at distant but well determined places) of the parallax.
Prof. Peirce has arranged the formulse of computation, with a
view to this special application, for the use of the U.S. Coast
Survey. See Proceedings of the American Association for the
Adv. of Science, 9th meeting, p. 97.

344. When an isolated observation of either an immersion or
an emersion is to be computed, with no corresponding observa-
tions at other places, it will not be necessary to compute the
values of x and y for a number of hours. It will be sufficient to
compute them for the time ¢ + (¢ being the observed local
mean time, and o the assumed longitude); and, as the correction
of this time will always be small, the hourly changes may be
found with sufficient precision by the approximate formule,
easily deduced from (482),

.’r’=d7°cosd y:ﬂ
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where da and dd denote the hourly increase of a and & respect-
ively.

845. To predict an occultation of a given star by the moon for a
given place on the earth.—W e here suppose that it is already known
that the star is to be occulted at the given place on a certain
date, and that we wish to determine approximately the time of
immersion and emersion in order to be prepared to observe it.
The limiting parallels of latitude between which the occultation
can be observed will be determined in the next article.

For a precise computation we proceed by Art. 322, making
the modifications indicated in Art. 340.

But, for a sufficient approximation in preparing for the obser-
vation, the process may be abridged by assuming that the moon's
right ascension and declination vary uniformly during the time
of occultation, and neglecting the small variation of the parallax.
It is then no longer necessary to compute the co-ordinates = and
y directly for several different times at the first meridian, but
only for any one assumed time, and then to deduce their values
for any other time by means of their uniform changes. It will
be most simple to find them for the time of true conjunction of
the moon and star in right ascension, which is readily obtained
by the aid of the hourly Ephemeris of the moon. Let this time
be denoted by 7,, We have at this time z = 0, and the value of
y will be found with sufficient accuracy by the formula

3—4a’
n

o=

in which 8, z, are the moon’s declination and horizontal parallax
at the time 7}, and ¢’ is the star’s declination. .

Let aa (in seconds of arc) and ad here denote the hourly
changes of the moon’s right ascension and declination for the
time 7,. Then we have, nearly,

a:‘———cosd Y= —

Let T, be any assumed time (which, in a first approximation,
may be the time 7j itself). Then the values of the co-ordinates
at this time are

I=‘7'J(Tx—q’o) y=yo+y’(Tx_1;)
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and to find the time (7') of contact of the star and the moon's
limb, we shall, according to Art. 322, have the following formule:

d=py —d—o

in which g, is the sidereal time at the first meridian corresponding
to T, a’ is the star’s right ascension, and w is the longitude-

A sin B = psin ¢ & = pcos ¢'sin 8
A cos B =pcos¢’ cosd n = A sin(B—4¢')
o = 54148 sin 1” &'—=yu' A cos B
log 1= 9.41916 7 =o' E8ind’
mein M =z —& nsin N=uxa'—¢&
mcosM=y—y ncosN=y —v
sin 4 ="ﬂ(l'k[_:i) log k = 9.43500
__kcosy mcos(M —N)
=T n
T'=1T +-

where 4 is to be taken so that cos 4 shall be negative for
immersion and positive for emersion.

For a second approximation, we take 7 as the assumed time
T, and repeat the computation for immersion and emersion
separately. The new value of & for this second approximation
will be most readily found by adding the sidereal equivalent of
7 (converted into arc) to its former value.

It is more especially desirable to know the true time of
emersion, and the angle of position of the point of reappearance
of the star. Since this angle in solar eclipses was reckoned on
the sun’s limb, while here it must be reckoned on the moon’s,
it will be equal to 180 + @: so that, taking the value of v from
the last approximation, we shall have

Angle of pt. of contact from the) °
north pt. of the moon’s limb =180°+ N + 4

* For the angle from the vertex of the moon’s limb, we find y by
the equations

psiny=¢4 &'t peosy=19+47'r
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where £, 3, §, 7/, t are to be taken from the last approximation ;

and then
Angle of pt. of contact from

the vertex of the moon’s limb}= 180° 4+ N+ y—7y

If the computation in any case gives msin (M — N) >k, we
have the impossible value sin+) > 1, which shows that the star is
not occulted at the given place. If we wish to know how far
the star is from the moon’s limb at the time of nearest approach,

we have (Art. 824)
4=+ msin(M—N)

the sign being taken so that 4 shall be positive. This is the
linear distance of the moon’s centre from the line drawn from
the place of observation to the star, and therefore the angular
distance as seen from the earth is #4. The apparent semidiameter
of the moon is 7k, and hence the apparent distance of the star
from the moon’s limb is 7 (4 — £).*

ExaMPLE.—Find the times of immersion and emersion in the
occultation of Aldebaran, April 15, 1850, at Cambridge, Mass.

The elements of this occultation have been found on p. 558,
with which an accurate computation may be made by the
method of Art. 322; but, according to the preceding approximate
method, we proceed as follows. The Greenwich time when the
moon’s right ascension was equal to that of the star is found,
from the values of @ on p. 553, to be

T, = T°47 = T* 28 12°.

For this time we have A

Aa = + 2174" 3 = 4 16° 49 31".1
a3 = 4 384 ¥—= 16 12 1.7
= 8536 3_o'—=4  2249"

whence, by the above formulee,
y, = + 0.6360 o= + 0.5886 y'= 4+ 0.1086

Then the computation for Cambridge, ¢ = 42° 22’ 497,
o = 4* 44" 30", will be as follows. For the first approximation,
we assume 7, = T, and hence we have

* More exactly, allowing for the augmentation of the moon's semidiameter, it is
(4 —k) (1 4 ¢ sinr), where we have { = A4 cos (B — ¢').
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T,= 1™28=12.

Sid. time Gr.noon = 1 83 9.0
Reduction for T, = 1 13.6
p,= 9 2 34.6
o = 4 27 18.3

o= 4 4 30
ﬂ.‘—a'-—.m=0=23 50 46.3

= 357° 41'.6

with which we find the fo]lowing results:

z= 0. y = - 0.6360
& = — 0.0298 » = 4 04377
m sin M = 4 0.0298 m cos M — 4 0.1983
M= 8° 82'.4 logm = 93021
o’ = 4 0.5886 y = + 0.1086
= + 0.1940 7' = — 0.0022
n sin N = + 0.3946 ncos N — 4 0.1108
N= 74°191 logn= 96121
. logsiny= n9.8395 log cos § =  9.8590
_meos(M— N) 02,1690 keosy + 04801
n n
For immersion. For emersion.
= — 06491 T = +4 0*3111
T,= 7.4700 T, = 74700
T= 6.8209 T = 7.7811
T= 6*49~15° T = 7 46=52
o= 4 44 30 o= 443
Local time = 2 4 45 Local time—= 3 2 22

These times are nearly correct enough; but, for a more accurate
time of emersion, we now assume 7= 77811, with which we
find

x=x’(Tl—1; = 4 0.1831 y'(Tl—-T;)=+0.0338
y°=—|-0.6360
y = -+ 0.6698

and to find the new value of & we have r = + 0%.3111 = 1840,
the sidereal equivalent of which is 18 431, or in arc 4° 40’8
This, added to the above value of &, gives the corrected value
¢ = 2° 22/.4. Repeating the computatlon with these new values
of z, y, and &, we find
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meos(H — Ny _ 4= 817° 22
_meos@M = M) _ _ gn.5082 N= T4 55
kcosy 180

— =+ 04901 212 17
r=—0.0181 r=_38 38
T, = 7.811 208 34

T= 7.7630 The star reappears at 212° 17’

= TMMT | m the north point, or 208° 34’

Local time = 8 1 17 ( Om "30 MOTLY POIR, Or

from the vertex, of the moon’s
limb.

This time agrees within 21 with the actually observed time of
emersion (given on p. 552). The principal part of the difference
is due to the error of the Ephemeris on this date. '

346. To find the limiting parallels of latitude on the earth for a
given occultation.—The limiting curves within which the occulta-
tion of a piven star is visible may be found by the general
method given for solar eclipses, Art. 811, which, of course, may
be much abridged in such an application. But, on account of
the great number of stars which may be occulted, it is not pos-
sible to make even this abridged computation for all of them.
The extreme parallels of latitude are, however, found by very
simple formule, and may be used for each star.

For a point on the limiting curve, the least value of 4 in Art.
324 is in a solar eclipse = L, but in an occultation it is = £.
Hence we have, by (557), the condition

+msin(M—N)=k
or, restoring the values of m sin M=z —§, mcos M=y — 7,
(x—8&cosN—(y—n)sinN==k

The angle N is here determined by the equations (552); but, for
an approximate determination of the limits quite sufficient for
our present purpose, we may neglect the changes of § and 7, and

take
nein N =2z ncos N =y

Let z, and y, be the values of z and y for the assumed epoch
T,; then for any time 7'= T, + ¢ we have

r==zx,+nsnN.x
Vor. L—36

Y=y, +ncos N.z
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which reduce the above condition to
(x,—&cos N—(y,—n)sin N=+k

By the last equation of (500), we have, by neglecting the com-
pression of the earth,

sin ¢ =7 cos 3’ 4 ¢ sin &’
(=y(A—=8—1)

and we are now to determine the maximum and mininum values
of ¢, which fulfil these conditions. Let us put

in which

a=—E&co8 N4 ysin N
b= &s8in N4 ycos N

from which follow
&=—acos N+ bsin NV
= asin N4+ bcosN
(= yv@—a—¥9

Then we also have, by our first condition,
a=—zx,co8 N+ ysinN+k

which is a constant quantity, since we may here assume z’ and y’
to be constant.
Since we have a*+ b*+ =1, we can assume y and ¢ so as to

satisfy the equations
cosy =a
sinycose =1>
sinysine={_

in which sin y may be restricted to positive values. The formula
for ¢ thus becomes

sin ¢ = cos y 8in IV cos 8’ 4 sin y cos ¢ cos NV cos 3’ 4 sin y sin ¢ sin &'

which may be put under a more simple form by assuming § and
4, so as to satisfy the conditions

sin § = sin N cos &’
cos 8 cos A = cos N cos &'
cos A sin A = sin &’

in which cos 8 may be restricted to positive values.
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‘We thus obtain
sin ¢ = sin S cos y 4 cos § sin y cos (A — ¢)

in which ¢ and ¢ are the only variables. Since cos 8 sin 7 is
positive, this value of sin ¢ is a maximum when cos(A —¢) =1
or 2—e=0; and a minimum when cos(A—¢)=—1, or
A —e=180°. Hence we have, for the limits, sin ¢ =sin (8 =),
that is

for the northern limit, ¢ =48 4 r

for the southern limit, ¢ =8 —

One of the points thus determined may, however, be upon
that side of the earth which is farthest from the moon, since we
have not restricted the sign of ¢, and our general equations
express the condition that the point of observation lies in a line
drawn from the star tangent to the moon’s limb, which line
intersects the surface of the earth in two points, for one of which
¢ is positive and for the other negative. But, taking ¢ only with
the positive sign, we must also have sin ¢ positive. For the
northern limit, therefore, when A =¢, 8in 4 must be positive,
which, according to the equation cos 3 sin 2 = sin ¢’, can be the
case only when &’ is positive. Hence the formula ¢ =8+ r
gives the most northern limit of visibility only when the star is
in north declination. For similar reasons, the formula ¢ =3 —7y
gives the southern limit only when the star is in south declina-
tion. The second limit of visibility in each case must evidently
be one of the points in which the general northern or southern
limiting curve meets the rising and setting limits,—namely, the
points where { =0, and consequently, also, sin e=0, cose==*1,
which conditions reduce the general formula for sin ¢ to the
following :

sin ¢ = (8in IV cos y == cos IV 8in y) cos 8’ = sin (IV == y) cos &'

If cos NV is taken with the positive sign only, the upper sign in
this equation will give the most northern limit to be used when
the southern limit has been found by the formula ¢ =3 —r; and
the lower sign will give the southern limit to be used when the
northern limit has been found by the formula ¢ =8 + 7.

Finally, since the epoch 7 is arbitrary, we may assume for it
the time of true conjunction in right ascension when z,= 0, and
we shall then have

a=cosy=y,8inN + £k
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The above discussion leads to the following simple arrangement
of the formulse

cos y, = y,sin V =+ 0.2723 (r < 180°)

sin 3 = sin N cos ¢’ B< 909
n=~8%xn (604)

cosy, = y,8in V= 0.2723

sin ¢, = sin (V = y,) cos &’ (V< 90°)

in which the upper or the lower signs are to be used, according
as the declination of the star is north or south. When the
declination is north, ¢, will be the northern limit and ¢, the
southern; and the reverse when the declination is south. The
angle IV is here supposed to be less than 90°, and is found by
the formula

4
tan N = 7
always considering y’ as well as 2’ to be positive.

When the cylindrical shadow extends beyond the earth, north
or south, we shall obtain imaginary values for 7, or 7,. The
following obvious precepts must then be observed:

1st. When cos 7, is imaginary, the occultation is visible beyond
the pole which is elevated above the principal plane of reference,
and, therefore, we must put for the extreme limit ¢, = + 90°, or
¢,= — 90°, according to the sign of 4’.

2d. When cos , is imaginary, the value of ¢, will be the lati-
tude of that point of the (great circle) intersection of the prin-
cipal plane and the earth’s surface which lies nearest the depressed
pole; that is, we must take ¢,= ¢’— 90°, or ¢,= &'+ 90°
according as ¢’ is positive or negative.

It is also to be observed that the numerical value of ¢,
obtained by the formula ¢,= 3 =+ y, may exceed 90°, in which
case the true value is either ¢, = 180°— (3 = r,), or ¢, = — 180°
— (3 = 1), since these values have the same sine.

ExampLe.—Find the limiting parallels of latitude for the
occultation of Aldebaran, April 15, 1850.
‘We have found, page 559, for this occultation,

¥, = + 0.6360 o = 0.5886 ¥ = 0.1086

Hence, with ¢’= 16° 12/, we find
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N= 79°3% log sin 8 = 9.9751
y,8in N = + 0.6255 A =T0° 47
k= 02723 n=26 8
cos y, = -} 0.8978 B+ 7r,=96 b5
cos y, = 4 0.3532 ¢, =8 b

7. = 69°1¢
N—y,= 10 14 .= 9 49

It is hardly necessary to observe that the occultation is not
visible at all the places included between the extreme latitudes
thus found, since the true limiting curves do not coincide with
the parallels of latitude, but cut the meridians at various angles,
a8 is illustrated by the southern limit in our diagram of a solar
eclipse, p. 504. Unless a place is considerably within the
assigned limits, it may, therefore, be necessary in many cases to
make a special computation, by the method of Art. 345, to deter-
mine whether the occultation can be observed.

OCCULTATIONS OF PLANETS BY THE MOON.

347. If the disc of a planet were always a circle, and fully
illuminated, its occultation by the moon might be computed by
the general method used for solar eclipses by merely substituting
the parallax and semidiameter of the planet for those of the sun;
and this is the method which has generally been prescribed by
writers on this subject. But with the telescopes now in use,
and especially with the aid of the electro-chronograph, it is
possible to observe the instants of contact with the planet’s limb
to such a degree of accuracy that it appears to be worth while
to take into account the true figure of the visible illuminated
portion of the planet. Moreover, the investigation of this true
figure possesses an intrinsic interest which justifies entering upon
it here somewhat at length.

In order to embrace at once all cases, I shall consider the
planet as a spheroidal body which even when fully illumi-
nated presents an elliptical outline, and when partially illumi-
nated presents an outline composed of two ellipses, of which
one is the boundary of the spheroid and the other is the limit of
illumination on the side of the planet towards the observer. I
begin with the determination of the first of these ellipses.
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348. To find the apparent form of the disc of a spheroidal planet.*—
Let us first express the apparent place of any point of the
surface of the planet, by referring it to three planes perpen-
dicular to each other, of which the plane of zy coincides with the
plane of the planet’s equator, while the axis of z coincides with
the axis of rotation. In this system, let

Z,Y,2 = the co-ordinates of the point on the surface of the
planet,
&, 5, { = those of the observer.

Straight lines drawn from the observer to the centre of the
planet and to the point on its surface determine their apparent
places on the celestial sphere. If these places are referred to
the great circle which corresponds to the planet’s equator, and
if we put

A4, ¥ = the geocentric longitudes of the apparent places of the
planet’s centre and the point on its surface, reckoned
from the axis of x, in the great circle of the planet's
equator,

8,3’ =the latitudes of these places referred to the great
circle of the planet’s equator,

p, o’ = the distances of the centre of the planet and the point
on its surface from the observer,

we shall have (Arts. 82 and 38)t

pcosBcosd—=—¢&

pcosfAsinl=—y } (605)
p8in = —1¢

pcospf'cos NV =z —§&

pcosp'sind =y —1g } (606)
psin =z —¢

* The method of investigation here adopted, so far as relates to the apparent form of
the disc, is chiefly derived from Bxsskw, Astr ische Untersuchungen, Vol. L. Art. VL

+ The group (606) may be deduced by supposing for & moment that the position
of the observer is referred to a system of planes parallel to the first, but having its
origin at the point on the surface of the planet. The co-ordinates in this system are
equal to those in the first increased respectively by z, y, and z. The negative sign
in the second members of both groups results from the consideration that the longi-
tude of the observer as seen from the planet is 180°-- 4, or 180° 4 A’; and bis
latitude, — 3, or — 3'. Compare Art. 98.
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Now, let 0 and C, Fig. 47, be the apparent Fig. 47.
places of the planet's centre and the point on its
surface, projected upon the celestial sphere; @
the pole of the planet’s equator; P the pole of the
earth’s equator; and let

P

& = the apparent distance of C from O = the arc
oc,

p' = the position angle of C reckoned at O, from
the declination circle OP towards tho east,
= POC,

p= tho position angle of the pole of the planet
=P OQ ;

then, in the triangle QOC, we have

sin &' sin (p’ — p) = cos 3’sin (X' — A)
sin 8’ cos (p' — p) = cos 8 sin 3'— sin 8 sin g’ cos (X' —2)

Multiplying these by p’, and substituting the expressions (605)
and (606), we obtain

p'8in &8in (p' —p) = — x8in A 4 y cos A
p'singcos (pf —p)=—2xsinfcosd — ysin fsind 4 zcos 8

or, since ¢’ is very small and p’sin s’ or p’s’ differs insensibly
from psin ¢’ or ps’,

pesin (p) —p) = —xs8ind 4 ycosi 607
ps’cos(p’—p)=—zsinﬂcosl—ysinﬁsinl+zcosﬁ} (807

These equations apply to any point on the surface of the planet.
If we apply them to those points in which the visual line of the
observer is tangent to that surface, they will determine the curve
which forms the apparent disc. The equation of an ellipsoid of
revolution whose axes are a and b, of which b is the axis of
revolution, is

—+y Y+ bb (608)

and the equation of a tangent line passing through the point
whose co-ordinates are €, 7, and { is

»

L (609)

The distances , , and { are very great in comparison with z,
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y,and 2. If we divide (609) by p, the quotients ; 2 will be
of the same order as ;, f—:, g, but the quotient % will be inappre- -

ciable in relation to the quotients —, Y,z Performing this
aa’ aa’ bb

division, therefore, and substituting the values of £, 3, and { from
(605), we may write for the equation of the tangent line

__xcosfBcosd  ycosfsind zsinp (610)

0 aa aa + bb

If the curve ACB, Fig. 47, is referred to rectangular axes
passing through the apparent centre O of the planet, one of
which is in the direction of the pole of the planet, and if u and
v denote the co-ordinates of any point of the curve, so that

u = ¢'sin (p — p)
v =28cos(p —p)

the equations (607) and (610) will enable us to determine z, 3,
and 2 in terms of u and v. Putting

bb

—=1—ce
aa
the three equations become
pu = — x8ind 4 ycosd
pv = —(x 0082+ ysin A)sin 8 4 zcos B

0= (xcosd+ ysind) (1 —ee)cos 3+ zsind
from which we derive

—2x8ind 4 ycosd = pu

LY.

1 — ee cos'3

2= v(l—ee)cosﬁ
1 — eecos’p

—xco8d —ysind=pv

Substituting these values in (608) and putting

] =; = the greatest apparent semidiameter of the planet,
¢ =1/(1 — ee cos* §)
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we find
v
88 = uu + pws (611)

which is the equation of the outline of the planet as projected
upon the celestial sphere, or upon a plane passed through the
centre of the planet at right angles to the line of vision. It
represents an ellipse whose axes are 2s and 2s /(1 — ee cos® 3),
e being the eccentricity of the planet’s meridians. The minor
axis (OB, Fig. 47) lies in the direction of the great circle drawn
to the pole of the planet’s equator.

‘We next proceed to determine what portion of this ellipse is
illuminated and visible from the earth.

849. To find the apparent curve of illumination of a planet’s surface.—
If the sun be regarded as a point (which will produce no sensible
error in this problem), the curve of illumination of the planet, as
seen from the sun, can be determined by conditions quite similar
to those employed in the preceding problem; for we have only
to substitute the co-ordinates expressing the sun’s position with
reference to the planet, instead of those of the observer. If,
therefore, we put

A, B = the heliocentric longitude and latitudo of the centre
of the planet referred to the great circle of the
planet’s equator,

the equation of the tangent line from the sun to the planet,
being of the same form as (610), will be

__xcosBcosd ycosBsind = zsinB

0= aa + aa + bb (612)

If each point which satisfies this condition be projected upon
the celestial sphere by a line from the observer on the earth, and
u and v again denote the co-ordinates of the projected curve, we
have here, also, to satisfy the equations

pt — — x 8in X 4 y cos A
pv = — (xcosd + ysin A) sin § 4 2 cos § } (613)

in which 2 and 3 have the same signification as in the preceding
article. The values of z, y, and 2, determined by the three
equations (612), (618), being substituted in the equation of the
ellipsoid, we obtain the relation between u and v, or the equation
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which is the required equation of the curve of illumination, as
seen from the earth, projected upon the celestial sphere. It
represents an ellipse whose centre is at the origin but whose
axes are, in general, inclined to the axes of co-ordinates, and,
consequently, to the axes of the ellipse of equation (611). The
equation (611) is only the particular case of (616) which corre-
sponds to V=0, or the case of full illumination.

850. We have yet to determine what portions of the apparent

Fig. 45 disc are bounded by the two curves

B respectively. If ABA’B’, Fig. 48,
- 4 is the ellipse of (611), which I shall
/ call the first ellipse, and CDC’D’ that

A O

of (616), which I shall distinguish as
D - the second ellipse, the visible outline
of the planet is composed of one-
half the first and one-half the second
curve, and these halves either begin or end at the points C'and
C’, which are the common points of tangency of the two curves.
These points satisfy both equations; and, therefore, putting «, and
v, for the co-ordinates of either point, and subtracting (611) from
(616), we find

B'

3
0 =(u,sin w4 vlcoz w) tan'V

which is satisfied, in general, by taking

Cos w

u, 8in w + v, =0

Denoting the position angle corresponding to % v,, by p, we
have u,= s, sin (p,— p), v,= 8, cos(p;—p). Substituting these
values, and also putting

¢, 8in w, = sin w €, €08 W, = e (617)
the preceding condition becomes
¢, 8,co8(p—p—w)=0
whence
p=p + w0, F 90° (618)

which expresses the position angles of both Cand C’. If we
draw the arc 0D0’, Fig. 48, making the angle BOO’ = w, and
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take 00’=YV, the point O’ will be nearly the position of the
planet as seen from the sun, and the arc V will be the measure
of the angular distance between the sun and the earth as viewed
from the planet. If we assume sin w to be positive in equations
(615), as we are at liberty to do, the arc V' will be reckoned from
the planet eastward from 0° to 860°. Now, so long asV'is less
than 180°, the west limb will evidently be the full limb, and
when V'is greater than 180°, the east limb will be the full limb.
Hence we infer that a point whose given position angle is p’ is
on the east limb when

pP>p+w,—90° and <p + w, + 90°

but on the west limb when

P<p—+w —90° and > p -+ w, 4 90°

WhenV > 90° and < 270°, the planet is crescent; but when
V> 270° and < 90°, it is gibbous. In the case of a crescent
planet there are two points, one on the full and the other on the
crescent limb, corresponding to the same position angle: hence
in observations of a crescent planet the point of observation on
the limb will not be sufficiently determined by the position
angle alone ; it will be necessary for the observer to distinguish
the crescent from the full limb in his record.

351. In order to apply the preceding theory, it is necessary to
find the quantities p, 8, 4, B, 4. The direction of the axis of x
in Art. 348 was left indeterminate, and may be assumed at
pleasure, but it is most convenient to let it pass through the
ascending node of the planet’s equator on the equinoctial, so that
2 and B will be reckoned from this node. The position of the
node must, therefore, be known, and this we derive from the
researches of physical astronomers. If we put

n = the longitude of the ascending node of the planct’s
equator on the equinoctial,

i = the inclination of the planet’s equator to the equi-
noctial,

we have at any given time ¢, for the planets Jupiter and Saturn,
the only ones whose figures are sensibly spheroidal,
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we deduce from the data of BesskL and DaAMoIsEAU, for a given
year 4,
N'=3835° 40" 16" 49”.80 (t —1850)
For Jupiter.! I'= 2° 851"+ 0".43(t—1850)
{N =23836°33'18"- 46".55 (t —1850)

N'=167° 381’ 52" 46".62 (t —1850)
For Saturn. { I'= 28°10'27"— 0”.35(t—1850)
{ V= 48°31'34"—86".75 (¢t —1850) — 0"".0625(¢ — 1850)*

and these values for Saturn also apply to the rings.
Finally, if we put

A’y B'= the heliocentric longitude and latitude of the
planet, referred to the ecliptic, ¢

the formule (29) or (81) will serve to convert 4’— N’ and B’
into 4 — N and B; and they become

K sin M= tan B’ K'sin(A—N)=cos(M — I')
K cos M=sin(A'—N")  K'cos(4—N)=cos M cot(4'—N") | (620)

tan B = sin (4 — N) tan (M — I')

852. The preceding complete theory admits of several abridg-
ments in its application to the different planets, varying according
to the features peculiar to each.

Jupiter—The inclination of Jupiter’s equator to the ecliptic is
so small that the quantity ¢ =1/(1 — ee cos®8) never differs
sensibly from /(1 — ee), which, according to STRUVE’s measures,
is 0.92723, I shall, therefore, use as a constant the value
log ¢ = 9.9672. Again, on account of the small inclinations both
of Jupiter’s equator and of his orbit to the ecliptic, the angle w
never differs much from 90°, and, since this angle is required
only in computing the gibbosity of the planet (which never
exceeds 0''.5), it is plain that we may take w = 90°, and that V'
may be found with sufficient accuracy by the formula

V=4—-12
or, indeed, by the formula
V=a—u (621)

in which 4’ and A’ are, respectively, the heliocentric and geo-
centric longitudes of the planet, the former being taken directly
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sent the centres of the earth, the sun, and the planet; 8’0’0,
the great ciccle of the celestial sphere whose plane passes through
the three bodies; S’and (¥, the geocentric places of the sun and
the planet; 0", the heliocentric place of the planet. Then 0’0"
is the arc heretofore denoted by V, and, in the infinite sphere, is
the measure of the angle 0’00 = SO.E’ Putting then V=0'0",

r = 8’0, and also

R’ = S0 = the heliocentric distance of the planet,
R =8E= “ “ “ earth,

we have
smyV = £ sin
= R’ r

We might find V directly from the three known sides of the
triangle SOE; but, as we have yet to find p, and y comes out at
the same time with p in a very simple manner, it will be prefer-
able to employ the above form.

To find p and y, let &, O, 0, Fig. 50, be the three places
above referred to, and P the pole of
the equinoctial. Draw O’Q perpen-
dicular to the great circle S'0'0". A
This perpendicular passes through the
adopted pole of the planet, and we
have PO'Q =p, or PO'S'= 90°— p,
and 8’0’=y. Hence, denoting by &' "
and D the declination of the planet
and the sun, and by &’ and A their
right ascensions respectively, the spherical triangle PS’0’ gives

Fig. 50.
Q

o’

sin y sin p = cos 4'sin D — sin 8’ cos D cos (a' — 4)

cos y = sin &’sin D 4 cos ¢’ cos D cos (o’ — A)
(622)
sin y cos p = cos D sin (o' — 4)

Hence, introducing an auxiliary to facilitate the computation,
both p and V will be found by the following formulee :

tan F' = tan D sec (o' — 4)
tan p = cot (o’ — A) 8in (F — 8") sec F
R sin (o' — A) cos D (628)

sin ¥V = = o8 p

In this method of finding V' we do not determine whether it is
Vou. L—37
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Let O, Fig. 51, be the apparent centre of the planet, and C
the point of contact of its limb with Fie. 51
that of the moon. Let OM be drawn Rl
from O towards the moon’s centre, in-
tersecting the moon’s limb in D. Since
the apparent semidiameter of any of
the planets is never greater than 317,
it is evident that no appreciable error
can result from our assuming that the
small portion CD of the moon’s limb
coincides sensibly with the common
tangent to the two bodies drawn at C.
If, then, the planet were a spherical
body with the radius 0D, the observed
time of contact would not be changed. We may, therefore,
reduce the occultation of a planet to the general case of eclipse
of one spherical body by another, by substituting the perpen-
dicular OD for the radius of the disc of the eclipsed body. Let
s'’ denote this perpendicular; let OA and OQ be the axes of u
and v respectively, to which the curve of illumination is referred
by the equation (616); and let & be the angle QOD which the
perpendicular s’ makes with the axis of v. The equation of the
tangent line CD referred to these axes is

usind 4 vcosd=g" (625)
‘We have also in the curve .
dv
= tan &

Differentiating the equation (616), therefore, we have

( v 8in w

tan 9 sin w
ucosw—-—c— cos W + ———

c

+(u sin w v czsw)(sin w— tan 3 cos w ',ccosw)sec’V= 0

By means of this equation, together with (616) and (625), we can
eliminate % and v, and thus obtain the relation between s and s’’.
To abbreviate, put

v 8in v

= uCosSw—

. v cos w
y=usnw--+4
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and also
in 4
¢'sind’ = B—"—;— ¢'cos 8’ =cos 8 (626)

then the three equations become

x cos (¢ — w) — y sin (¥ — w) sec’V =0
4 ysec'V = s?
z sin (¢ — w) + y cos (¥ — w) =%

From the first and second of these we find

- 8 8in (¥ — w)
" y/[1 — cos* (% — w) sin? V]
¥ s cos (¥ —w) cos*' ¥

= v [1 — cos*(# — w) sin? V]
which substituted in the third give
&' = scc’y/[1 — cos’ (¥ — w) sin* V']

Hence, if we put
Bin y = cos (¥ — w) sin ¥V
we have } (627)
8§ =8.cc'coB y
We have seen (Art. 852) that in all practical cases we may take
w = 90°, and, therefore, instead of (626) and (627) we may
employ the following:

tan 8/ — tan $
c
sin y = sin #sin ¥V (629)
ot sin ¢ cos y
sin ¥

If the occultation of a cusp of Venus or Mercury is observed,
we have at once 8’ = s cos # (for the axis of v coincides with
the line joining the cusps), and we do not require V.

The value of '’ is to be substituted in (486) for the apparent
semidiameter of the eclipsed body. In that formula, H denotes
the apparent semidiameter at the distance unity: therefore, we
must now substitute the value

sin H = r’ sin "
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or, by (624) and (628),
sin H — 8in s, s.in 0' cos y (629)
sin ¢

Since f is here very small, we may put tan f = sin f, and the
formula for L (488) becomes

L=—0sinf+k

=(z—C)ﬂ:$iki(z—-C)m

ry
Hence, putting
1(=k+(z-:)":i“"° (630)
we have ?
Le@—0f y (631)

rg

‘When the angle ¢ is known, therefore, the preceding formulse
will determine L, with which the computation will be carried
out in precisely the same form as in the case of a solar eclipse,
Art. 329. To find 8, let OP, Fig. 51, be drawn in the direction
of the pole of the equinoctial; then we have POQ = p, and,
denoting POM by @,

4= Q —p

and @ has here the same signification as in the general equations
(567), as shown in Art. 295: so that when N and 4 have been
found by (568) and (569), we have @ = N + 4, or

8=N+4—p (632)

But to compute « by (569) we must know L, and this involves
H, which depends upon &#. The problem can, therefore, be
solved only by successive approximations; but this is a very
slight objection in the present case, since the only formule to be
repeated are those for L and «, and the second approximation
will mostly be final. It can only be in a case such as the occul-
tation of Saturn’s ring, where the outline of the eclipsed body is
very elliptical, and especially when the contact occurs near the
northern or southern limb of the moon, that it may be necessary
(for extreme accuracy) to compute H a second time and, conse-
quently, 4 a third time.

The formula (629) is adapted to the general case of an ellip-
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855. In the cases of the planets Neptune, Uranus, and the
asteroids, the occultation of their centres will be observed, and
it will be most convenient to compute by the method for a fixed
star, only substituting for = the difference of the moon's and
planet’s horizontal parallaxes—that is, the relative parallax—in
the formule for z and y, Art. 341.

This artifice of using the relative parallax may also be used
with advantage for Jupiter and Saturn.

Having thus found z and y as for a fixed star, we shall have,
in the preceding method,

L=(z-c)“i':_,H+k (634)

the other formule remaining unchanged.

ExampLe 1.—Several occultations of Saturn’s Ring were ob-
served by Dr. Kane at Van Rensslaer Harbor on the northwest
coast of Greenland during the second Grinnell Expedition in
search of Sir JoEN FRANKLIN.* The first of these was as
follows:

1853 December 12th, Van Rensslaer Mean Time.
Iimersion, contact of last point of ring, . . . 14*20~ 488
Emersion, “ “« “ “ .. . 14 54 183

The assumed longitude of the place of observation was w =4*43" 32*
west of Greenwich. The latitude was ¢ = 78° 37’ 4/, whence

Jog p sin ¢’ = 9.989862 log p cos ¢’ — 9.296642

I From the Nautical Almanac we take for 1853 Dec. 12, 19%,

p=—2°373 l=24° 04  whence logc=1logsin I =9.6094
and from page 578, the outer ring only being observed,

s, = 187".56 log sin s, = 6.9587

% « Agtronomical Observations in the Arctic Seas by ELisHa Kent Kang, M.D.,
U.S.N. Reduced and discussed by CmarLes A. ScHorr, Assistant U.S. Coast
Survey.” Published by the Smithsonian Institution, May, 1860.
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II. We shall compute the elements of the occultation for the
centre of the planet for the Greenwich hours 18 19*, and 20"
For these times we take the following quantities from the
Nautical Almanac, applying to them the corrections determined
by Mr. ScHoTT from the Greenwich observations of this date :

Moon.
Gr. T. (-] é T
18 32 36= 5528 |4 18° 2'47".5| 54' 7".68
19 88 53.92 12 13 .9 7 .22
20 40 52 .81 21 85 .7 6 .76
Saturn.
o’ d L4 log ¥
18 3* 39= 9:.88 + 17° 14’ 28”4 17.05 0.9126
19 9.16 26 .6
20 8 .44 24 5

The corrections applied to the Nautical Almanac values to
obtain the above are aa = — 0°.22, aéd = — 5'°.0, aa’ = + 0°.15,
ad’ = —-8".9, ar = + 0.8, this last correction being derived
from Mr. Apams’s Table in the Nautical Almanac for 1856.

‘We shall use the relative parallax, and compute as for a fixed
star, taking = — #’ for m, namely

18 54’ 6".73
19 6 .17
20 6 .71

whence we find for the moon’s co-ordinates,

N SN A L LA
18 | —059152 | 052457 | 4089382 | -+ 0.17436
19 | —0.06690 | + 052466 | +1.06817 | - 0.17434

20 | 4045781 | 4052475 | 41.24250 | 4 0.17432
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8ln ©
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z = 63.54

for 19, as sufficiently accurate,

III. For the co-ordinates of the place of observation: |

Local mean time ¢

t+ o

Local sid. time

and hence, by the formulse
&

7

4

z2—¢

IV. Assuming now two epochs corresponding nearly to the
times of observation, the remainder of the computation in extenso

is as follows:

Assumed To{

xﬂ

Yo
T,—E&=msinM
Y, —n =mcos M
M

logm
r=nsin N

Yy =mncos N

N

log n

I Immersion. Emersion.
14> 20= 48-.8 14 54= 183
19 4 20.8 19 37 50.3

117° 4’ 59".7 | 125°28" 44".7

on p. 550,
4+ 017529 | 4 0.18685
4 0.90575 +4 0.91363
+ 0.38 + 035

63.16 63.19

, Immersion. Emersion.
192,07 = 192,63 —
19* 4= 12¢ 19* 37= 48,

— 0.03017 + 0.26365

+ 1.08037 + 1.17800

— 0.20546 + 0.07680

+ 0.17462 + 0.26437
810° 21’ 38" 16° 11’ 56"
9.43079 9.43980

+ 0.52467 + 0.52472

-+ 0.17434 4 0.17433

71° 37’ 10" 71° 37 20"
9.74263 9.74266

Then, for a first appproximation, by the formula

sin § =

and observing that the immersion is here an interior contact and

m sin(M — N)

+k

the emersion an exterior contact, we have
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Immersion. Emersion.
A=3600, logb=1log AT ¥ | pgys 8.01171
log ¢ = log 22— M) | 15 95056 3.00741
b | —880.1 + 10273
c| —o11.1 +1017.2
b—c=r + 381.0 + 10.1
Gr. Timeof obs. =T, 4+ =T | 19 4~ 43.0 19* 37= 58°.1
T—t=ow 4 43 54.2 4 43 39.8

If now we wish to form the equations of condition for deter-
mining the effect of errors in the data, we proceed precisely as
in the case of a solar eclipse, page 533, and find

l Immersion. ' Emersion.
log » tan 4 ' 0.5341 n0.4596
log v sec ¢ 0.5983 0.5454

where log v = log 8:—20 = 0.8028. Hence, neglecting the terms

depending on the correction of the parallax and of the eccen-
tricity of the meridian, the equations of condition are

(Im.) o, = 4% 43= 54.2 — 2.001 y + 8.421 8 — 3.965 xak
(Em) o, =4 43 89.8 — 2.001 y — 2.881 8 4 3.511 nak

Eliminating ¢ from these equations, we have
w, = 4* 43~ 46°.4 — 2.001 y 4 0.092 = ak

An error of 1’ in the moon’s semidiameter (represented by zak)
would, therefore, have no sensible effect upon this combined
result; and since y must also be very small, as we have corrected
the places of the moon and planet by the Greenwich observations,
we can adopt, as the definite result from this observation,

w, = 44 43 46'.4

It will be observed that in this example OUDEMANS’s value,
k = 0.27264, has been employed; but our final equation shows
that the result would have been sensibly the same if we had
taken the usual value 0.27227; for the reduction of the result to
that which the latter value of % would have given is only
0.092 X 3247 X (— 0.00037) = — 0~.11.
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ExampLE 2.—The occultation of Venus, April 24, 1860, was
observed at the U. 8. Military Academy, West Point (w=4*55"51",
¢ = 41° 23’ 31”.2), and at Albany (w = 4* 54= 594, ¢ = 42° 3%
49".5), as follows:

West Point. Albany.
8id. time. Mean time.

First contact, planet’s full limb

Disappearance of cusp

Immersion.
) 10 47 47.80 8 31 54.2

10* 46= 53°.35 ) 8 31~ 19

The observations were made with the large refractors of the
- West Point and Dudley observatories.

I. To find p for the cusp observations, we have for the Green-
wich time 13478, which is the mean of the times of the obser-
vations at the two places, and will serve for both,

Planet, o’ — 78° 38'.6 & — 25° 59'.1
Sun, A=2382 455 D=13 12.9
whence, by (623
» by (629), p=—T027'3
and, from p. 578,
8, = 8".55 log sin s,— 5.6175

II. We shall compute the moon’s co-ordinates only for the
Greenwich times 13*.4 and 13*.5. For these times the American
Ephemeris furnishes the following data:

Moon.
Gr. T. [ 4 T
134 | 79°12 16”8 +26°43'176 | 57 6"6
13 .5 79 15658 .5 26 43 4 3 57 6 .7

Venus.

o’ g | log 7

13*4 78° 38’ 23"”.3 + 25° §9" 2".5 9.9193
18 5 78 38 40 .7 25 59 4 .3 9.9193

ITence, by the formule of I. and IL., p. 452, we find
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a d logg
184 | 78° 38 17".2 | 4 25° 58 54".5 9.9987
13.5]| 78 88 84 .0 25 58 56 .3 9.9987

z t4 y Yy
134 | 4 0.531695 4+ 0.58890 | - 0.773681 | 4 0.00480
13.5 -+ 0.585085 4 0.774161 ’

z = 60.19

IIL For the co-ordinates of the places of observation :

Local mean time ¢

t+ w

3

log p sin ¢
log p cos ¢’
£

n

¢

z2—¢

To

Yo
Zg—E=msin i
Yo—n=mcos if
M

log m

N

‘West Point. Albany.
Full lmb. Cusp. Yull limb, Cusp.
8 83m 48:.72| 834w 38.02) 8A31™ 1490 | 8 31m 54.20
13 290 84.72{ 13 30 29.02] 13 26 1.30 | 18 26 53.60
161° 48’ 20.8 {161° 66’ 67.0 | 161° 2’ 44".3(161° 16’ 50".9
9.818064 9.828792
9.875814 9.867167
+ 0.745828 | 4 0.746178 | 4 0.780013 | 4 0.730878
+ 0.551616 | + 0.552009 | - 0.568428 | - 0.564641
+0.37 + 0.87 + 0.88 4038
59.82 69.82 59.81 59.81
IV. Assuming 7,= 18".45, we find, for this time,
+ 0.558390
+ 0.773921
—0.187438 | —0.187788 | — 0171628 | — 0.171988
+0.222806 | + 0.221012 | - 0.210498 | - 0.209280
819° 51 50” | 819° 88’ 477 820° 48'30” | 820° 85’ 11”
9.463568 9.462425 9.438916 9.482788
89° 29/ 6"
9.727480

log n

Then, for the observations of the full limb, we have for. both
places, by (631), putting H = s,,

= 0.27264

log (z—¢)| 1.7768

ar. ¢o. log rg | 0.0820
constant | 5.0542
.......... log | 6.9130

............

1.7768

0.0820
5.6176

7.4768
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sun, p. 533. For the full limb we have only to substitute as, for
aH; but for the cusp we must evidently substitute as, cos & for
aH. It will be more accurate to restore ’g in the place of r,
since g here differs sensibly from unity. We shall thus find

o = 4255 540 — 1.967 y + 2.720 8 — 8.358 xak — 4.061 as,
o =4 55 55.7 — 1.967 y + 2.844 8 — 8.459 nak + 3.697 as,
o’=4 55 b.4— 1967y -+ 2.352 8 — 3.067 rak — 8.704 as,
o'=4 556 5.4 — 1967y + 2.438 8 — 3.134 rak + 3.349 as,

where «’ and '’ denote the true longitudes. Hence, also,

o — o = +} 486 4 0.368 8 — 0.291 xak — 0.357 as,
o — " = + 50.3 + 0.406 8 — 0.325 xak + 0.348 as,

and the mean is
o — o =+ 495 + 0.387 8 — 0.808 = ak — 0.005 as,

The effect of an error in s, upon the difference of longitude of
the two places is, therefore, insensible ; but, to eliminate # and
mak, observations of the emersion should also be used. The
effect of y and & upon o’ and '’ can only be eliminated by
means of observations of the moon’s place at a standard observa-
tory on the day of the observation, as we have already shown in
other examples.

TRANSITS OF VENUS AND MERCURY.

856. The transits of Venus and Mercury may be computed by
the method for solar eclipses, substituting the planet for the
moon. In the formule (486), (487), &c., we must employ

for Venus, = 0.9975
for Mercury, k = 0.83897

which are the values which result from the apparent semi-
diameters of these planets adopted on p. 578.

Bince b is no longer a small quantity, it will be necessary to
employ the exact formule (479) instead of (481).

The longitude of a place at which the transit is observed may
be computed from each of the four contacts of the limb of the
sun and planet, by the formule of Art. 829. These observations,
however, are of little use in determining an unknown longitude,
on account of the great effect of small errors in the assumed
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The discussion of all the equations of condition of the form
(635) will, therefore, give not only the correction az of the
planet’s parallax, but also, by the last-mentioned relation, that
of the solar parallax.*

The transits of Venus will afford a far more accurate deter-
mination of this parallax than those of Mercury ; for, on account
of its greater proximity to the earth, the difference in the dura-
tion of the transit at different places will be much greater, and
the coeflicient of ax in the final equations proportionally great.

Although the general method for eclipses may also be ex-
tended to the prediction of the transits of the planets (by Art.
822), yet it is more convenient in practice to follow a special
method in which advantage is taken of the circumstance that
the parallaxes of both bodies are so small that their squares and
higher powers may be neglected. LaeraNGE’s method for this
purpose is the most simple, and, in the improved form which I
shall give to it in the following article, most accurate.

857. To predict the times of ingress and egress for a given place.—
We first find the times of ingress and egress for the centre of the
earth, from which the times for any place on the surface are
readily deduced.

Let a, 8, a’, &’ be the right ascensions and declinations of the
planet and the sun for an assumed time 7},
at the first meridian, near the time of con-
junction. Let m denote the apparent dis-
tance of the centres at this time. Let S’
and S, Fig. 52, be the geocentric places
of the centres of the sun and planet, P the z
pole; then, denoting the angles PS’S and ¢
PSS’ by P’ and 180° — P, the triangle PSS’ s
gives

Fig. 52.

sin 4 m sin $(P 4 P’) = sin}(a — a') cos 3 (3 + 4')
sindm cos } (P + P') = cos }(a — o) sin § (3 — &')

But, since §m is at the time of a contact only about 8, we
may without appreciable error substitute it for its sine, and,

* Another method of forming the equations, apparently shorter, but in reality,
where many observations are to be reduced, not more convenient than the rigorous
method, will be found in ENckE'S Die Enifernung der Sonne von der Erde, aus der
Venusdurchgange von 1761 hergeleitet; and Der Venusdurchgange von 1769.

Vou. 1.—38
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The formul® (686), (687), and (638) serve for the complete
prediction for the centre of the earth.

To find the time of a contact for any point of the surface of
the earth, let m be the geocentric apparent distance of the
centres of the two bodies at any given time; m’ the apparent
distance, at the same time, as seen from a point on the earth’s
surface in latitude ¢ and longitude w; = and z’ the equatorial
horizontal parallaxes of the planet and sun respectively; £ and £’
their geocentric zenith distances; p the radius of the earth for
the latitude ¢. The apparent zenith distances are { + px sin &
and '+ pn’8in {’: these approximations being quite exact
where the parallaxes are so small. Let Z, Fig. 52, be the
geocentric zenith of the place, S and S’ the true places of the
bodies. The distance SS’=m will become the apparent dis-
tance m’ if we increase the sides ZS and ZS’ by pwsin{ and
px’sin{’; and, if we regard these small increments as differen-
tials, we shall have, by the first equation of (46),

m —m = — pxsin { c08 S 4 p~’sin {’ cos S’

where § = 180° — ZSS’, and 8’ = ZS'S.
Let S, be the middle point of the arc SS’, and denote the
angle ZS,S by S,, the arc ZS; by ¢,; then we have

— 8in £ cos S = sin }m cos {,— cos ¢ m sin {, cos S,
sin {’cos S’ = sin ¢ m cos {, -+ cos ¥ m sin {,cos S,

which give
m' —m = p[(x 4 «') sin 4 m cos {,— (x — =’) cos m sin ¢, cos S,]
If then g and y are determined by the conditions

gsiny = (x 4 #) sin im
gcosy = (x — ') cos im (639)
we have
m’ — m = gp (sin y cos {, — cos y sin £, cos S))

Produce the arc 8’8, and take S,G = 90° + y. Then, denoting
the arc ZG by 4, the triangle ZG'S, gives

cos A = — sin y cos {, 4 cos y sin £, cos S,
and the expression for m’ becomes

m = m — gp cos 4 (640)
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In order to apply these formule in predicting the time of a
contact at a given place, we observe, first, that this time differs
but a few minutes from the time of the same contact for the
centre of the earth, and during these few minutes we may
assume the distance m to vary uniformly.

Let T be the time of the geocentric contact, and 7" the
required time of the contact at the place, both times being reck-
oned at the first meridian. At the time T' the geocentric dis-
tance = 8’ = s, and at the time 7” the apparent distance
m’ =3’ + 8 (neglecting here the augmentation of the semi-
diameters, which are too minute to be considered in merely
predicting the phenomenon); but at this time 7” the geocentric
distance has become

m=s'is+(T'—T)%’ti‘

d . . .
where —d'—:‘ denotes the change of m in the unit of time. These

values substituted in (640) give
r T) 26 = 9p cos A
Differentiating (636), we find

‘f;: M+—¥mcosfl[_acosd =nsin N
dm dM
EcosM Tit—msmM—d =mncos N

whence
dm
=F =M cos (M —N)

But, since at the time T we have m = ¢’ + s, we also have for
this time, by (638), M — N = 4}, and, therefore,

m —
g =neosy
which gives
, gp cos 2

in which the values of n and 4 found in the computation for
the centre of the earth are to be employed. The value of 2 to
be employed must be that which results from the preceding
formule at the time 7. Now, at this time the value of the angle
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M is @, which is found by (688), and this value is to be employed
in (642), while in (641) we take m =8’ = s.
The formula for 77 will be
n—x
ncosy
in which T, n, 4}, D, ©, * — n’ are all constants, found in the
computation for the centre: so that the computation for a par-
ticular place requires only this single formula in which the
latitude and longitude of the place are to be substituted.

T'=T+

[ sin ¢’ sin D 4 p cos ¢’ cos D cos (8 — w)] (645)

858. The necessary formule for the complete prediction are
recapitulated as follows:

I.—FOR THE CENTRE OF THE EARTH.

Assume a convenient time 7 near the time of true conjunc-
tion of the sun and the planet, or this time itself, reckoned at
the first meridian, and find for this time the values of a, ¢ for
the planet; a’, 8’ for the sun; the semidiameters s and s';
and the relative changes in right ascension and declination, a
and d, in the unit of time. Then, putting J,= } (¢ + J’), compute

m 8in M = (a — a") co8 3, n 8in N = a cos &,
mcos M = & —¢' ncos N=d
. . _msin(M—N)
mMY=9xs

where '+ & is to be employed for exterior contact, and s’ — s
for interior contact. Putting A = 3600, to reduce the terms to
seconds, we then find

T=To—h(si-s

)cos.x.—hTmcos(M—-N)

in which cos 4 is to be taken with the negative sign for ingress
and with the positive sign for egress.

For the greatest precision, the computation may be repeated
separately for ingress and egress, taking for T, the value of T
first computed.

As in solar eclipses, if 7} denotes the time of nearest approach
of the centres of the bodies, and 4, the distance at this time, we
have

4,=msin (M — N) T,= To—’%ncos (M — N)
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I1.—CONSTANTS.

For each of the computed values of T take the corresponding
values of IV and + from the preceding computation. Then

@=N+4

Take the horizontal parallaxes 7 and #’ of the planet and the
sun, and compute 4 and D by the formule

A fsin F —=sgin y
r=r_—_= tan (s + 9) Jfcos F = cosy cos @
cos Dsin (4 —a) = cosysing@

cos D cos (4 — o)) = — f8in (3, + F)
sin D = S cos (3, + F)

in which a, is the mean of the right ascensions of the planet and
sun, and &, the mean of their declinations, at the time 7.

Find the sidereal time x at the first meridian corresponding
to 7. Then form the three constants

— —
O =p— 4 B=" hsinD c="T hcos D
ncosy n.cosy
III.—FOR A GIVEN PLACE WHOSE LATITUDE IS @ AND WEST
LONGITUDE w.

Find the values of p sin ¢’ and p cos ¢’ by the geodetic table.
The required time of the phenomenon at the place is

T'"=T+ B.psin ¢ 4+ C.p cos ¢’ cos (0 — w)

The local time will be 7'— w. The angle @ will express the
angular distance of the point of contact reckoned on the sun’s
limb from its north point towards the east, and will be very
nearly the same for all places on the earth.

ExamprLe.—Compute the times of ingress and egress for the
transit of Mercury, November 11, 1861.

L. For the centre of the earth.—Let us take as the first meridian
that of Washington, and employ the elements given in the
American Ephemeris.

The Washington mean time of conjunction in right ascension
is November 11, 14* 59" 43°.6, which we shall adopt as the value
of T,. For this time we have
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II. For any place on the surface of the earth we have, there-
fore, in mean Washington time,

Ingress, 7" — 12" 8™ 47:.8 — 16+.66 p sin ¢’ — 52'.19 p cos ¢’ cos (101° 1'.6 — )
Egress, T"=16 12 23 .8 + 48.10 psin ¢' 4 26.23 p cos ¢’ cos (808 20.56 — w)

or, in a more convenient form, giving the logarithms of the
constant factors,

Ingress, 7" — 128 §=470.8 — [1.2217] psin g’ + [1.7176] p cos ¢’ cos (w + 78° 58".4)
Egress, T"=16 12 28.8 4 [1.6821] p sin ¢’  [1.4187] p cos ¢’ cos (v | 656 89.5)

To determine whether the phenomenon is visible at the given
place, we have only to determine whether the sun is above the
horizon at the computed time. All the places at which it will
be visible will be readily found by the aid of an artificial terres-
trial globe, by taking that point where the sun is in the zenith
at the time 7, and describing a great circle from this point as a
pole. All places within the hemisphere containing this pole
evidently have the sun above the horizon. In the present
example this point at ingress is in latitude — 17° 48’ and longi-
tude 186° 2’ west from Washington; and at egress it is in lati-
tude — 17° 46’ and longitude 247° 4/. The whole transit is
invisible in the United States, and in Europe only the egress is
visible.

For the egress at Altona, ¢ = 58° 32'.8, w = 850° 8'.5, we find

T"= 16*13=13.0
o =— 5 47 574
Altona mean time of egress —= 22 1 10.4

The time actually observed by PrrerseN and PAPE was
22* 1~ 8.5.* The error of the prediction is very small, and
proves the excellence of LE VERRIER'S Tables of Mercury, from
which the places in the American Ephemeris were derived.

OCCULTATION OF A FIXED STAR BY A PLANET.

859. Very small stars disappear to the eye when near the
bright limb of a planet, before they are actually occulted by it;
and the occultations of stars of sufficient brightness to be ob-
served at the limb of the planet are so rare that it has not been
thought worth while to incur the labor of predicting their oc-

* Astron. Nack., Vol. LVI. p. 289.
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from the changes in the position of the plane of the orbit and
the plane of the equator.

861. The variations of astronomical elements are usually
divided into secular and periodic.

Secular variations are very slow changes, which proceed through
ages (secula), so that for a number of years, or even centuries in
some cases, they are nearly proportional to the time.

Periodic variations are relatively quick changes, which oscillate
between their extreme values in so short a period that they can-
not be regarded as proportional to the time except for very small
intervals.*

The true position of a celestial body, or of a celestial plane, at a
given time, is that which it actually has at that time; its mean
position is that which it would have at that time if it were freed
from its periodic variations.

362. The plane of the ecliptic, or of the earth’s orbit, is a
slowly moving plane. Its position at any epoch, as the begin-
ning of the year 1800, can be adopted as a fixed plane, to which
its position at any other time may be referred.

The plane of the equator is also a moving plane. Its inclina-
tion to the fixed plane and the direction of the line in which it
intersects that plane are constantly changing, thus causing
variations in the obliquity of the ecliptic and in the position of
the equinoctial points.

863. The latitudes and declinations of stars are therefore
subject to variations which do not arise from the motions of the
stars, but from the shifting of the planes of reference; and the
longitudes and right ascensions are in like manner subject to
variations from the shifting of the vernal equinox, which is
their common point of reference, or origin, from which both are
reckoned.

Under the head of precession are considered those parts of
these variations which are secular ; namely, those which arise
from the motions of the mean ecliptic and the mean equator.

* Most of the secular variations also have periods, though of great length, and
therefore not yet in all cases well defined: so that, strictly speaking, the distinction
between secular and periodic variations is only an arbitrary one, established for
practical convenience between variations of long and short periods.
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changes their right ascensions, their longitudes, and their
latitudes (Art. 23).

867. Obliquity of the ecliptic.—Since by the mutual action of the
planets the position of the plane of the (mean) ecliptic is changed
while that of the equator remains fixed, the mutual inclination
of these planes, or the obliquity of the ecliptic, is changed.

The action of the sun and moon in causing luni-solar preces-
sion does not directly produce any change in the obliquity of
the ecliptic; but, in consequence of the change produced by the
planets, the attraction of the sun and moon is modified : so that
there results an additional very minute change of the inclination
of the mean equator to the fixed plane of reference.

These changes produce small changes in the co-ordinates of
the stars, which, being secular in their character, are combined
with the preceding in deducing the general precession.

868. To find the general precessior. in longitude, and the position of
the mean ecliptic, at a given time.—Let NL, Fig. 53, be the fixed
ecliptic, or the mean ecliptic at the
beginning of the year 1800; 49,
the mean equator, and V the mean
vernal equinox, or, as it is briefly
called, the mean equinox, of 1800.
In the figure, let the longitudes be
reckoned from V towards V. Let
V'V, be the luni-solar precession in longitude in the time ¢, and
A,Q the mean equator at the time 1800 + {. By the action of
the planets, the ecliptic in the same time is moved into the posi-
tion VL, : so that V,V,is the planetary precession in the time ¢,
and V, is the mean equinox at the time 1800 + ¢.

The point N may be called the ascending node of the mean
ecliptic on the fixed ecliptic.

The difference between NV and NV, is called the general
precession in longitude, being that part of the change of the longi-
tudes of the stars which is common to all of them.

_ Now, let us put

Fig. 53.

¢, = the mean obliquity of the ecliptic for 1800,
=NVeQ,

¢, = the obliquity of the fixed ecliptic at the time 1800 4 ¢,
=NV,
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¢ = the mean obliquity of the ecliptic at the time 1800 - ¢,
=DNV,@
¢ = the planetary precession in the interval ¢,
= V‘l V”
4 = the luni-solar precession in the interval ¢,
=V,
4, = the general precession in the interval ¢,
=NV,—NV,
11 = the longitude of the ascending node of the mean ecliptic
at the time 1800 4 ¢, reckoned on the fixed ecliptic from
the mean equinox of 1800,
= VN,
= = the inclination of the mean ecliptic to the fixed ecliptic
at tho time 1800 4 ¢,
=V,NV,

The first five of these quantities will be here assumed as known
from the investigations of physical astronomers. The following
are their values, according to STRUVE and PeTERS,* for the epoch
1800:

¢, = 28° 27’ 54".22

¢, = ¢+ 0".00000785

¢ =e¢,— 0".4738¢ — 07.0000014¢* (646)

4 = 0”.15119¢ — 0”.00024186¢*

4 = 50".83798¢ — 0”.0001084 ¢*

from which we can find 4, I, and =, as follows. In the triangle
NV, V, we have

180° — ¢ — NV, V, I+ 4 =NV,
e=NV,V, o+ 3,=~NV,

and hence, by the Gaussiax equations [Sph. Trig. (44)]

* Dr. C. A. F. PETERS, Numerus Constans Nutationis, pp. 66 et 71. The observa-
tions at Dorpat give 0”.4645 for the annual diminution of the obliquity, and thisis
adopted in the American Ephemeris instead of 0”.4738, which results from theory
and is subject to an error in the estimated mass of Venus. The difference, however,
is 80 small that either number will serve to represent the actually observed obliquity
for half a century within 0”.5.

I have Lere adopted the precession constant (50”.3798) given by PETERs, rather
for the convenience of the reader (this being employed in the English and American
Almanacs) than on account of its superior accuracy. Recent researches rather
confirm Besser's constant (50”.86354). See MApLER's Die Eigenbewegungen der
Fizsterne, Dorpat, 1856, p. 11.
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cosrsin}(y —4,) =sinidcost(e +¢)
cosrcos(y —4,) =cosidcosi(e —¢)
sinirsin (1 + 34 + #4,) =sinddsind(c +¢) (647)
sindz cos (I 4+ 3¢ + 34,) =cosidsing (e —¢)

The angles $# and (¢ — ¢,) are so small that their cosines may
always be put equal to unity, and, consequently, also those of
$x and } (Y — +,); while for their sines we may substitute the
arcs. We thus obtain at once, from the first two equations,

¥— 4, =193cosi(c+¢)
where we can take, with sufficient accuracy,

cos ¥ (¢ } ¢) = cos (g, — 07.2369¢)
= cos ¢, + 07.2369¢ sin1” sin ¢,

and hence, by substituting the values of # and ¢, from (646),

v — 4, = 071387t — 07.0002218¢*
4, = 50”.2411¢ + 07.0001134¢* (648)

The sum of the squares of the last two equations of (647) gives
nt=#'sin'} (e + ¢) 4 (¢ —¢)?
in which we may take
sin?} (¢ 4 ¢) = sin?e, — 0”.2369¢ sin 1” sin 2¢,
and then, substituting the values of &, ¢, and ¢ — ¢,, we obtain
=?= (0".228111¢ — 07.0000033234 ¢*
and, by extracting the root,
= 0"4776¢ — 0".0000035¢* (649)

The quotient of the third equation of (647) divided by the
fourth gives

tan (4 34+ $4) =

in which we have

8 0.15119¢ — 0.00024186#
c—e¢  — 04738t — 0.00008758
= — 0.3191 + 0.00051636¢

sini(e + ¢,)

&§—¢
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whence, neglecting #* as before,
B— B—= — zsin(L — 1) (853)

The values of 4,, #, and IT being found for the time 1800 + ¢,
by means of (648), (649), and (650), the formule (652) and (653)
determine the required precession in the longitude and latitude,
and, consequently, also the mean place of the star for the given
date.

870. To find the precession in longitude and latitude between any tico
given dates.—Suppose 4 and 8 are given for 1800 + ¢, and A’ and B’
are required for 1800 + ¢. Denoting by L and B the longitude
and latitude for 1800, we shall have, by (652),

A—L=4 + = tan B cos(L — m)
¥ — L =4,/ + «tan B cos(L — 1)

where 4/, 7/, II’ are the quantities given by (648), (649), and
(650) when ¢ is substituted for ¢. If we subtract the first of
these equations from the second, and at the same time introduce
the auxiliaries @ and 4, determined by the conditions

a sin A = (' + =) 8in § (' — 1)
acos A = («' — =) cos } (11’ — 1)

we find
A’—1=4,l'—4,+acos(L—n -2l-n

—A)tanB

and in the same manner, from (653),

ﬂ'—ﬁ:—asin(L—n’_zl-n—A)

For the values of A4 and a we have

¢4t
r—t

74
7 —=x

tan 4 = tan }(’' — o) = tan } (11’ — m)

or, by (650),

_(t+\'—mo ” (t’+t)
Y e e e

so that cos 4 may be put equal to unity, and therefore we have

a=7—n=x
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‘We may also put tan 3 instead of tan B in the above formule,
since the error in A’ — A thus produced will be only a term in 7*;
and for L we may take 2 — 4}, : 8o that if we put

n+4n

L — —A=2-M

and then substitute the numerical values of our constants, we
shall have the following formule for computing the precession
from 1800 + ¢ to 1800 + ¢':

M— 172°45'81" 4 t.50".241 — (¢ + t) 8”.505
V—a= (t—t)[50".2411 4 (£'+t)0".0001134]
4+ (¢'—1t) [0”.4776 — (£ +£) 0”.0000035] cos (A—M)tan 3
B'— B—— (t'—t) [0.4776 — (¢'+ £) 0".0000035] sin (A—M )

(654)

These are the same as BesskL's formule in the Tabule Regiomon-
tance, except that we have here employed the constants given by
PEeTERS, and the epoch to which ¢ and ¢ are referred is 1800.

To find the annual precession in longitude for a given date.—If we
divide the equations (654) by ¢ — ¢, the quotients

A'—12 B —8
t—t t—t

will express the mean annual precession between the two dates;
and if we then suppose ¢’ and ¢ to differ by an infinitesimal
quantity, or put ¢ = ¢, these quotients will become the differen-
tial coefficients which express the annual precession for the in-
stant 1800 4 ¢; namely,

gg — 50”2411 4 07.0002268¢

+ [0”.4776 — 0.0000070¢] cos (A — M) tan B
%" = — |0”.4776 — 0.0000070¢] sin (A — M) (655)
in which
M= 172° 45 31" 4 83".23¢
ExampLeE.—For the star Spica, we have, for the beginning of
the year 1800,

the mean longitude, L =  201° 3" 5".97
the mean latitude, B = — 2°2’'22".64
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Find its mean longitude and latitude for the beginning of the
year 1860.

First. By the direct formule (652) and (653).—We find, by
(648), (649), and (650), for ¢ = 60,

4, = 50’ 14”.874
= = 28".6434
n=172°37'1"
whence
L — m = 28° 26' 5”
= tan B cos (L — m) = — 0".897
= 8in (L — m) = + 13".639

and hence, by (652) and (653), the precession is
A— L= 50'14".874 — 0”.897 = 50" 13".977
f— B — — 13".639
and the mean longitude and latitude for 1860.0 are
A= 201° 53’ 20”.95
B=— 2° 2'36".28

Second. By the use of the annual precession.—The mean
annual precession for the sixty years from 1800 to 1860 is the
annual precession for 1830. Hence, by taking ¢ = 30 in (655),
and denoting by 4, and 8, the longitude and latitude for 1830,

g_‘t‘ —  50".2479 4 0”.4774 cos (4, — M) tan 4,
§=_mmumardn

M= 173°2' 8"

To compute these, we can employ approximate values of 4, and
B, found by adding the general precession for thirty years to L,
and neglecting the terms in x; namely,

A, = 201° 28'.2 Bo=—2°26
and hence 4, — M = 28° 26'.1,

A __ i 90 dﬁ__ " 90

7= 50.2329 7= 0”.2274

These multiplied by 60 give the whole precession from 1800 to

1860
’ 1—_L=5018"9T A—B=—13"64

agreeing with the values found above.
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871. Gliven the mean right ascension and declination of a star for
any date 1800 + ¢, to find the mean right ascension and declination for
any other date 1800 + ¢'.—Let V, V/
(Fig. 55) be the fixed ecliptic of
1800, V,Q the mean equator of
1800 + ¢, V,/Q the mean equator
of 1800 + ¢, @ the intersection of
these circles (or the ascending node
of the second upon the first). The
position of the point @ is found as
follows. The are V,V/ is the luni-solar precession for the in-
terval ' — ¢: so that, distinguishing by accents the quantities
obtained by (646) when ¢ is put for ¢, we have, in the triangle
QV, VY,

Fig. 65.

VWH=¥—4u QV,V;=180°—x¢, QVIV,=¢/,
and putting '
QV,=90°—2, QV; =90° 4 2, V,QV’ =8,

we find, by Gauss’s equations of Sph. Trig.,
cosi® sin § (2 4 2) =s8in (Y —¢) cos(e/ + ¢)
co8}0 cos}(Z + 2) =cost (¥ — ) cosd(e/ —¢)
8in 4O 8in } (7 — 2) = cos } (¥ — §) sin ¥ (¢ — ¢)
8in O cos } (7 — 2) =s8ind (§' — ) sind (¢ + ¢)
which determine ©, 2, and 2’ in a rigorous manner. But, since
3 (e, — ¢) is exceedingly small, we can always put unity for its
cosine, and the arc for the sine, and, consequently, the same
may be done in the case of the arc } (2’ — z); we thus obtain
the following simple but accurate formule:

tan}(Z 4 2) =tan (¥’ — ) cos (¢’ + ¢,)

$(e/—¢)
tan (3 — ) sin # (¢ +¢))

8in$0 =sin} (¢ — 4) sind (s + ¢)

(656)

1(@—2)= (657)

If V,and V,/ are the positions of the mean equinox in 1800 4- ¢
and 1800 + ¢, V.V, is the planetary precession for the first and
Vi’ V! that for the second of these times, which being denoted
by ¢ and ¢ we have

V,Q=90°—z —8
V/Q=90°4 7 — &
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If then we put

o,8 = the given mean right ascension and declination of a
star S, for 1800 4 ¢,
o’,8'= those required for 1800 4- ¢,

we have a =V,D, and o’ =V’ D,/and, consequently,

QD=V,D—V,Q=a +2+4 8 —90°
QD =V,D—V/Q=0qo —2 4 ¢ — 90°,

Fig. 56. Now, let P and P’ (Fig. 56) be the
P g poles of the equator at the times
P, p 1800 4 ¢, 1800 + ¢/, AQD, A'QD,

the two positions of the equator at
R these times, as in Fig. 55; S the star.
@ is the pole of the great circle PP’ 4’
P joining the poles P and P’, and,
therefore, PP’ = AA'= AQA’'=0,
and in the triangle PP’S we have

PS = 90° — 3, P'S—90° — &, PP'—=9

SPP'= AD=90°+4 QD = a+24+94
SP'P=180°— A'D'=90° — QD' = 180° — (a' — 2’ 4 #)

Hence, by the fundamental equations of Spherical Trigonometry,

cosd’sin (a'—2'+ 9') =cos dsin (;-{- z+49)
cosd’cos (d—2'+#')=cosdcos (a -} 2 4 #) cos © —sin 38in O (658)
8in 8'=cosdcos (a + 2 4 9)8inO -+ 8in 3cos ©

‘We have thus a rigorous and direct solution of our problem by
finding, first, ©, 2, and 2’ from (656), and hence &’ and &’ by (658),
employing the values of ¢, 4, & for the time 1800 4 ¢ and of
¢/, 4/, & for the time 1800 + ¢, as given by (646) for the two
dates.

872. The formule (658) may be adapted for logarithmic com-
putation by the introduction of an auxiliary angle in the usual
manner; or we may employ the GaussIaAN equations, which, if
we denote the angle at the star by C, and for the sake of brevity
put

A=atz49 A=od—24 ¢ (659)
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give
cos 4 (90° 4 8")sin $ (4'+C)=1co8 4 (90° 4+ 3 —O)sin 3} 4
cos 4 (90° 4 6")cos } (A'+C)=cos 4 (90° 4 8 4 O)cos } 4
sin 4 (90° 4 ¢')sin § (A'—C')=8in $(90° 4 8 — O)sin} 4
sin § (90° 4 8’)cos  (A'—C)=18in 1 (90° + ¢ 4 ©)cos 3 4

873. We may, however, obtain greater precision by computing
the differences between A and A’ and between & and ¢’. From
the first two equations of (658) we deduce

cos 8’ 8in (4'—A) = cos & sin A sin © [tan & 4 tan $© cos 4]
co8 3’ cos(A'— A) = cos 3 — cos 3 cos 4 s5in O [tan 3 4 tan } © cos 4]

so that, if we put

p = s8in O (tan 3 4 tan } © cos 4)
we have
psind

tan(4'— A)= —
an ( ) 1—pcosd (660)

and, by NAPIER'S Analogy,*
tan}(3'—3)=tan} 0O cos #(4'+ 4)
cos 4 (A’ — A)
ExaMpLE.—The mean place of Polaris for 1755, according to
the Tabule Regiomontane, is

a = 10° 55’ 44".955 8 = 87° 59 41".12

it is required to reduce this place to the mean equator and
equinox of 1820.

For 1755 we take ¢t = — 45; and for 1820, ¢’ = + 20; and, by
(646), we find—

For 1755. For 1820.

3y = — 37 477381 =+ 16’ 47".55

8= — 729 ¥= 4+ 2'93

¢, = 23° 27’ 54".23488 e = 23° 27’ 54".22294
and hence

W — ¥) =27 177.43
F(e/—e) = — 07.00597
F(< +¢) = 23° 27 54".28

* The formule (667), (6568), (659), (660) are those given by BesskL in the Tabuls
Regiomontans.
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with which the formule (657) give
}(Z 4 2) = + 25" 2".02

1(Z—2)= — 1789
z = + 25'8".91
2= 4 25 0".18

log sin $© = 7.499823
Then, by the formule (660), we find
A=qa+z+4 8=11°20 41".57

log p 9.256676 log tan $© 7.499825
log sin A  9.293836 log cos § (A'+ A) 9.989446
log cos 4 9.991430 log sec § (A'— 4) 0.000101
log pcos A 9.248106 log tan § (3'—¢) 9.489372

ar. co. log (1 — pcos 4) 0.084629
log tan (4'— 4) 8.635141

A'— A= 2° 28 18".08 3 —8= 21’ 12”.99
A’ =13° 48’ 59".65
o'=A'+27—¥=14° 13’ 5(".85 8’ — 88° 20 54".11

874. To find the annual precession in right ascension and declina-
tion.—In computing the precession for a single year, the square
of © becomes insensible, and we may take, instead of (660), the
approximate formula

A—Ad=d—a—(+2)+9%—8=0sinatans
and from (657) we then have, with sufficient accuracy,

Z4z={ — ) cose,
O= (Y —4)sin ¢

Substituting these values in the above formula, and then dividing
by ¢ — t, we have

a—a . V—3 ¥ —38 + Y—9

= Co8 ¢, — 2~ gin ¢, 8in o tan 8
Pt f—t T g Ty AR

which gives the annual precession between the times 1800 4 ¢ and
1800 + ¢, the unit of time being one year. But, in order that
the formula may express the rate of change at the instant
1800 + ¢, we must suppose the interval # — ¢ to become infinitely
small ; that is, we must write the formula thus:
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da dy ds  dy

— = — ¢08 ¢, — — -+ — 8in ¢8in o tan &
at o T g T S asine

and similarly, from the last equation of (660),

ds dy .
—— = —-8lng Cco8 o
dt dt

Putting then
dy ds
m=——Ccos8e — —
at dt (661)
dy .
n=—sing
at
we find, by (646),
g%-cose,==(50"3798-0m0002168t)cos.,
— 46”2135 — 0”.00019887 ¢
z_'t’ — 071512 — 07.00048872¢
and hence
m — 46”.0623 + 07.0002849 ¢ } (662)
n = 20".0607 — 0”.0000863 ¢

and the annual precession in right ascension and declination for

the time 1800 4 ¢ is found by the formule
da .

zt—=m—|-nsmatan¢)

(6683)

ds
— = Nnco8a
dt

These formulee may be used for computing the whole precession
between any two dates, if we multiply the annual precession at
the middle time between the two dates by the number of years in
the interval.

ExaMpLE.—The mean right ascension and declination of Spica
for 1800 are, by the Tabule Regiomontanc,

o= 13* 14~ 40°.5057
8= —10° ¢ 46".843

Find the mean right ascension (a’) and declination (8’) for 1860.
‘We have, for 1830, by making ¢ = 30 in (662),

m = 46".0708 n = 20”.0581
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and, for a first approximation, taking a’ = a, 8’ = 8, we have, by

(663),

dc___ " 99 dJ__ ,
71?_4—47 22 Et—_—l9'.00

The approximate precession for sixty years is, therefore,
in R. A., 4 2833" — | 1889 in dec., — 1140”
which, applied to @ and J, give the approximate values for 1860,
o' = 13* 17~ 494 8' = — 10° 25’ 47"
The means between these values and those of a and & are
o, = 18* 16= 15, 3= — 10° 16' 17"

which being employed in (663) give the more correct annual
precession for 1830,

da ds

T + 47".2579 = 18".9582
The true precession for sixty years is then
in R.A., + 2835”.474 — 8= 9+.0316, in dec., — 18’ 57".492,

which applied to a and & give the mean place for 1860,
o’ = 13* 17 49°.5373 ¢’ = — 10° 25" 44".335;

and these values agree almost precisely with those found by
the rigorous method of Art. 871.

875. To find the position of the pole of the equalor at a giren time.—
The precession causes the pole of the equator to revolve about
the pole of the ecliptic (nearly) in a small circle whose polar
distance is equal to the obliquity of the ecliptic. The time in
which the pole will make a complete revolution and return to
the same position (small changes in the obliquity of the ecliptic
not considered) is the value of ¢ given by the equation

50”.2411¢ 4 07.0001134¢* = 360° X 60 X 60 = 1296000”

which gives
t = 24447 years;

or, in round numbers, since the precession is not known with
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sufficient precision to determine so great a period exactly,
t = 24500 years.

To find the position of the pole for any indeterminate time
1800 + ¢, we have only to observe that if P, in Fig. 56, is the
pole for a fixed time 1800 + ¢, P’ that for the time 1800 + ¢/,
the right ascension of P’, reckoned from the equinox of 1800 + ¢,
is equal to that of the point @ diminished by 90°. The right
ascension of @ is V,Q in Fig. 55, and, in Art. 371, we have found

V,Q=90°—z—9
Hence, if we put

A, D = theright ascension and declination of the pole at the
time 1800 4 ¢, referred to the equator and equinox
of 1800 + ¢,

we have
A=—2—3
D=90°—©

which will become known by computing 4, 4/, ¢, ¢, # for the
times 1800 + ¢, 1800 + ¢, and then z and © by (657)

An approximate solution is obtained by neglecting the varia-
tion of ¢, and, consequently, taking 2’= z, and also neglecting &:
so that

tand = — tan 3 (Y — ¢) cos¢
sin (45°— 4D) —  sin H ,8 6in e, } (664)

The ambigtity in determining 4 by its tangent is removed by
observing that cos 4 and cos % (y/ —4}) must have the same sign
8o long as 4/ — 4 does not exceed 360°, as we readily infer from -
the equations (656).

For example, if we wish to find the position of the pole for
the year 14000, referred to the equinox of 1850, we take ¢ = 50,
' = 12200; whence ¢/ — ¢ = 165° 33/, and

A = 277° 52' D = 43° 28’
The position of a Lyre for 1850 is
a = 277° 58 3 — 38° 39

consequently, this star, in the year 14000, will be within five
degrees of the pole, and will become the pole star of that period.
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878. To reduce a star’s mean place from one epoch to another, when
the proper motion is given.—Let a, 8, be the given place for 1800 -+ ¢,
and let the given annual proper motion in right ascension and
declination, referred to the equinox of this date, be denoted by
da and dé. To reduce to the date 1800 + ¢, we first find the
whole proper motion in the interval, by the formulee

Aa =da(t'—1t) ad=ds({t'—1)
Then, putting
(o) =0 + aa (8 =24 as

we compute the precession by the formule of Arts. 371 to 374,
employing in these formule (a) and (d) for a and o.

If the proper motion (aa’, ad’) had been given for the epoch
1800 + ¢, we should first have computed the precession with the
given values a and 4, and, having applied it, if (@’) and (d’) were
the resulting values, we should have finally a’= (a’) + aa/,
0’ = (d") + ad'.

879. To reduce the proper motion in right ascension and declination
JSrom one epoch to another.—If, in Fig. 56, P and P’ are the poles
of the equator for the epochs 1800 4 ¢ and 1800 + ¢ respectively,
and we suppose the star S to vary its position, the present merely
requires us to deduce the relations between the variations of the
parts of the triangle SPP’, the side PP’ being the only constant
part. Observing the notation of Art. 871, we have (since ¢, &,
¢’y %' do not depend upon the star’s place)

d(SPP") =d(a 4+ ¢ + ¥) = da

d(SP'P) =d(180° — o' 4 ¢’ — 0') = — dd’
d(SP) = —ds
d(SP") = — ds’

and hence, by the formule (47) and (46), putting y for the angle
at the star,

co8 8’.da’= dacosdcosy 4 ddsiny } (665)
dé'= — da cos d sin y + d3 cos y
in which
sin y — 8inOsin(a 424 9) _ sinOsin (o’ — 2+ ¢)
r= cos 8’ - cos ¢
cos © — sin 3 8in &’
Cosy =

cos é cos o’
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and hence for 1755 we find 4
da = +4 1708228 d8 = + 07.004098

—_—

If, now, there had been given both the mean place and the
proper motion for 1755, namely,

o = 10° 55’ 44".955 8 = 87° 59’ 41”.12
de = 4 1".08228 dé = + 0".004098

to find the mean place for i820, we should first take

(a) = 10° 55’ 44”.955 | 17.08228 X 65 — 10° 56’ 55".30
(8) = 87 59 41.12 4 0 .004098 X 65 — 87 59 41 .39

and employing these values, instead of a and 4, in (659) and (660),
we should find
o424 8=A=11°21'51".92
log p = 9.256691
A'— A = 2° 28 33"45

31— = 1036744

whence
o’ = 14° 15’ 22".57 8'=288° 20’ 54".27

as given above.

880. T'he proper motion on a great circle.—If we denote this by
p, and the angle which the great circle makes with the circle of
declination of the star by y, reckoning the angle from the north
towards the east, we have

p 8in y = Aa cos 8 p COB y = AS
Thus, we find, in the preceding example, for Polaris in 1755,

p = 0".03809 7 = 83° 494
and in 1820,
p = 0.03809 2 =86°17'.8

where the accent of y’ is used for the second epoch, but p is
necessarily the same for both epochs.

It is evident, moreover, that we have y' =y + 7, and hence,
if p and y have been found for one epoch, it is only necessary to
compute y to obtain the reduction to another epoch; for we then
have, by (665),

cos 8'da’ =psin (y 4+ y) =psiny
dd' =pcos(y+yr)=pcosy
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&, =23° 27" 54’7.2. These coefficients, however, are not absolutely
constant: so that, according to PETERS, the formule for 1900 will be

Ae=  9".2240cos {3 — 0”.0896 cos 23 + 0".0885 cos 2
+0".6607 co82® + 0”.0092cos (O + ")
(667)
AL=—17".2677 sin ) 4 0”.2078sin 2 3 —0”.20418in2¢ + 0".0877 sin (C — I"’)
—17.26968in2( + 0".12768in (O — I') — 0”.0218s8in(Q +I)

Since the attractions of the sun and moon upon the earth do not
disturb the position of the ecliptic, but only that of the equator
and its intersection with the ecliptic, the nutation does not affect
the latitudes of stars, and its effect upon their longitudes is
simply to increase them all by the same quantity ai.

382. To find the nutation in right ascension and declination for a
given star at a given time.—Let a and & denote the mean right
ascension and declination of the star at the given time; a’and ¢’
the true right ascension and declination at this time, or the mean
place corrected for the nutation. Let the coeflicients of the
formule for ac and al be found for the given year by interpola-
tion between the values for 1800 and 1900, and then, taking
Q,C, ©, I, and I’ from the Ephemeris for the given date (the
day of the year, and, for the greatest precision, the hour of the
day), we can compute the values of ac and al. We can then
have either a rigorous or an approximate solution of our problem.

A rigorous solution may be obtained by employing the for-
mule (656), (658), and (659), substituting e + % a¢, a¢, a4, @ 4 z,
and @’ — 2’ for } (¢, + ¢), &/ — &, V' — 4, A and A/, respectively.

Another rigorous solution is obtained by first computing the
mean longitude A and latitude j3, from the given @ and 4, and
the mean obliquity ¢, by Art. 28. Then, with the true longitude
A + aA, the true latitude §3, and the true obliquity ¢ + ae, we can
compute the true right ascension a’ and declination &’ by Art. 26.

But, since ae and a2 are very small, an approximate solution
by means of differential formule will be sufficiently accurate,
and practically more convenient. The effect of varying 2 and
€ by ak and ae, while g is constant, is, by the equations (53),

€os 7 cos
cos ¢
3’ — 3= ad.sinycos B 4 Acsina

o/ —a=— — Ac cos a tan 8

in which 7 is the position angle at the star, as defined in Art. 25.
Vor. L—40
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Substituting the values of cos ycos 8 and siny cos 8 there given,
we have

o’ — a = aA (cos ¢ 4 8in esina tand) — Ac cosatand
3 — & = alsin ecos e 4 Aesina

Hence, substituting the values of al and as for 1800, with
¢ = 23° 27’/ 54"/, and also the values for 1900 with e = 23° 27/ 77,
we find

o—oa=
— (15”.8148 - 6”.8650 sin a tan J) sin §} — 9”.2281 cosatandcos
15".8321 8682 92240

+ ( 0".1902 4 0”.0825 sin a tan d) sin 203 4 0”.0897 cos a tan & cos 203

— ( 0”.1872 + 0".0818 sin a tan d) sin 2 — 0”.0886 cos a tan d cos 2

+ ( 07.0621 + 07.0270 sin a tan d) sin ( — I"')

— ( 1”.1644 4 0”.5066 sin a tan d) sin 2() — 0”.5510 cos a tan d cos 200

+ ( 07.1178 + 07.0609 sin a tan J) sin (O — I")

— ( 0”.0195 + 07.0085 sin o tan d) sin (® + I') — 0".0098 cos a tan dcos (O + I')
(668)

¢'— 6= —6".8660 cosasin) - 9".2231 sin & cos
68682 92240

+ 07.0825 cos o sin 203 — 0".0897 sina cos 203

— 0”.0813 cos a sin 2 + 0”.0886 sin a cos 2

-+ 0”.0270 cos a 8in ({ — I")

— 0”.6065 cos a 8in 2 + 0.5510 8in a co8 20D

+ 07.0609 cos a sin (O — I')

— 0".0085 cos a sin (O + I') + 0”.0098 sin a cos (O + I')

The values of the coefficients which sensibly change during the
century are given for 1900 in small figures below the values for
1800.*

Previous to the investigations of PETERs, the only terms
retained in the nutation formula were those depending on
2,28,2¢, and 20. Of the additional terms added by him, I
have retained only those which can have any sensible effect in
the actual state of the art of astronomical observation.

883. General tables for the nutation in right ascension and declina-
tion.—Of the various tables proposed for facilitating the compu-

% If we take into account the squares of A1 and Ae and their product in the develop-
ment of ' — a and 6’ — J in series, some of the coefficients are changed, but only by
two or three units in the last decimal place. Compare the formule of the text with
those given by PETERs in the Numerus Constans, and by STRUVE in the Astronom.
Nach., No. 486.
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tation of the nutation formulee, the most compendious are those
computed by N1corat, according to the form suggested by Gauss,
and included in WaRNSTORFF's edition of ScHUMACHER'S Hiilfs-
tafeln. In these tables the new constants are adopted from
PeTERS, 88 in the preceding formule, and the epoch is 1850.

For the lunar nutation in right ascension, the first table gives,
with the argument Q, the quantity

— 15”.8285 8in @ = ¢

The two remaining terms in the first line of our formula are
reduced to a single term by assuming auxiliaries b and B, also
given in the tables with the argument Q, determined by the

conditions
b sin (R + B) — 6".8666 sin §
b cos (& + B) = 9".2285 cos Q

Thus, the first line of the formula, containing the principal terms
of the lunar nutation in right ascension, becomes
c—bcos(Q + B—a)tansd

By the use of the same auxiliaries, the first two terms of the
lunar nutation in declination are reduced to the following:

— bsin (R + B—a)

For the solar nutation, the second table gives, with the argu-

ment 20, the quantity

—1".16448in 20 =¢
and the two remaining terms involving 2© are reduced to a

single one by the auxiliaries f and F, given in the table, which
are determined by the conditions

f8in (20 + F) = 07.5055 sin 20
fc0s (20 + F) = 0".5510 cos 20

8o that the solar nutation in right ascension is
g—fcos (20 4+ F—a)tans
and the solar nutation in declination is
—f8in(2O0 4+ F—a)
Almost all the remaining terms of the formule may also be

found by means of the table for the solar nutation. The coeffi-
cients of the terms in 2Q and 2¢ are about one-sixth part of
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so small an interval to be rectilinear and uniform, and the
motion of light to be uniform, the lines BA and B’A’ are
parallel, and the ray of light during its progress from A4 to B,
is constantly in the axis of the telescope ; for instance, when the
telescope is in the position bda, the ray will have reached the
point a, and we have

Aa:Bb = AB': BB’

The difference of apparent direction thus caused by the
motion of the earth combined with that of light is called the
aberration of the fixed stars. 'When we also take into account the
motion of the luminous body, as in the case of the planets,
another species of aberration occurs, which will be considered
hereafter, under the name of the planetary aberration.

The whole displacement of the star produced by aberration is
in the plane passed through the star and the line of the observer’s
motion, and the star appears to be thrown forward in this plane
in the direction of that motion. Thus, in the figure the whole
aberration is the angle SB’A4’; and, if we conceive the plane of
the lines SB’ and BB’ to be produced to the celestial sphere,
this plane will be that of a great circle drawn through the place
of the star and the points of the sphere in which the line BB’
meets it. The displacement of the star will be the arc of this
circle subtending the angle SB’A’ and measured from the star
towards that point of the sphere towards which the observer is
moving.

885. To find the aberration of a star in the direction of the observer’s
motion.—Let

# = AB’'B, = the true direction of the star referred to the

line B'B,,
= the arc of a great circle of the sphere joining the star’s

true place and the point from which the observer is
moving,

¥ = the apparent direction of the star referred to the same
line, = ABBR,,

¥ = the velocity of light,

v = the velocity of the observer;

then the aberration in the plane of motion is the angle A’B’A
= B'AB = ¢/ — &, and the triangle A BB’ gives
in(¥—9) BB v
sin  AB'V
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As #.— ¢ is very small, we may put the arc for the sine; and if
we then also put

k= (669)
Vsinl”
we shall have
o — 8= ksin & (670)

where the constant £ may be regarded as known from the velo-
cities of light and of the observer.

386. The motion of the observer on the surface of the earth is
the resultant of the motion of the earth in its orbit and its rota-
tion on its axis; that is, of its annual and diurnal motions. These
may be separately considered.

The annual aberration is that part of the total aberration which
results from the earth’s annual motion. It may be called the
aberration for the earth’s centre.

The diurnal aberration is that part of the total aberration which
results from the earth’s diurnal motion. It obviously varies
with the position of the observer on the earth’s surface, and
vanishes for an observer at the poles.

887. To find the annual aberration of a star in longitude and lati-
tude.—Let

4, B = the truo longitude and latitude of the star,
A, ' = the apparent longitude.and latitude (affected by
aberration),
©® = the true longitude of tho sun.

The point of the sphere from which the earth appears to be
moving is a point in the ecliptic whose longitude is 90° + ©
(the ecceutricity of the earth’s orbit being here neglected), and
Fig. 56 the. mean velocity of the earth in its orbit

T may be supposed to be substituted in (669):

s
¥ 8o that k is known.
If, then, BE (Fig. 58) is an arc of the
B ecliptic, E the point from which the earth

is moving, 8 the true place of the star, and if SB is drawn per-
pendicular to BE, we have, in the right triangle SBE,

SB = 3, BE =90°+ 0 — 4 SE — 8,
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and hence, if we denote the angle E by y, we have

sindginy = sin B

sindcosy = cos 8 cos (O —2) } (671)
cos ¥ = — cos 8 sin (O —A)

‘The apparent place of the star is on the great circle ES at the

distance ¢ from S: so that, if we now suppose S to be the
apparent place, the angle 7 is not changed, and we have

sin #'sin y =  sin 3’
sin #'cosy =  cos 8’ cos (O — &) } (672)
‘ cos ¥ = — cos 3'sin (O — X)

If, then, the true place of the star is given, the equations (671)
may be used to determine y and #; then &’ will be found from
(670), and, finally, & and 8’ will be found from (672). This is
the direct and rigorous solution of the problem; but a more
convenient solution is obtained by eliminating & and 7 as follows.
We find, from the equations (671) and (672),

sin &' cos 8 cos y — — cos 3 cos 3’ sin (O — 1) cos (O — *)

sin & cos ¢ cos y = — cos 8 cos 8’ cos (O — 4) sin (O — &)

the difference of which is

sin (8'——0) CO8 y = — cosﬂOOSﬁ'sin (l'—l)
whence
P U — (¥—®)cosy _ k sin ¥ cos
~ cosfcos@ ~  cospcosp’
or
cos (O — %)
Ve A== -7 6
cos 8 (673)

Again, we find, from our equations,
cot y = cot B’ cos (O — &) = cot B cos (O — 1)
by which #’ can be found from g after A’ has been found by (673),
or we may find the difference between 8’ and ;3 thus:

tan 2’ — tan 8 = tan ﬁ,-[cos (© —2)—cos (O — g)]

cos (O — %)
sin (8’ — B) = 2sin}(¥ —2) BiZOEG()@— _i (;’)+ A)]sin g’ cos 8

whence, taking 2 sin } (1’ — 4) = sin (¥’ — 1), we obtain, by means
of (673),
B'—B=—ksin [© — (A’ 4 A)] sin g’ (674)
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sphere being unity. The period in which a star appears to
describe this ellipse is a sidereal year.

389. To find the annual aberration in right ascension and declina-
tion.—Let

A, D — the right ascension and declination of the point E
(from which the earth is moving) ;

then, in the triangle formed by the point E, the star, and the
pole of the equator, the sides are 90° — D, 90° — ¢, and #; and
the angle opposite to & is A — a. If then we suppose the side
¢ to vary, the corresponding variations of the angle 4 — a and
the side 90° — & may be directly deduced by the differential
formulee of Art. 34. The angle at E and the side 90° — D being
constant, we find
co8 8.da = — d#9 sin C
dd = —dscos C

where C denotes the angle at the star. For determining C, our
triangle gives

sin & sin C' = cos D sin (4 — a)
sin & cos C = cos ¢ sin.D — sin & cos D cos (4 — o)

In (670) we may employ sin & for sin §/: so that, putting &’ —a
and ¢ — ¢ for da and d&, we find

o' — o= — ksec 8 cosD sin (4 — a) 676
8’ — 8 = —k [cos 8 8in.D — sin & cos D cos (4 — a)] (676)

The quantities 4 and D are found from the right triangle
formed by the equator, the ecliptic, and the declination circle
drawn through E, by the formule,

cosD cos A = — 8in ©
cosDsind= cosQ® cose 677)
sinD=  cos ® sin ¢

If we substitute these values in the formulwe for a’ — a and
¢’ — ¢, after developing sin(A — a) and cos (4 — a), we obtain

' — ¢ = —kcosQ® (sine cos 3 — cos ¢ sin J 8in a)

o/ —a = — ksec 3 (cos© cos e cos a } 8in © 8in a)
(678)
— k sin ® s8in 3 cos a
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If we retain the terms of the second order, (omitting, however,
those which do not involve ®, or the non-periodic terms), we
find that the aberration in right ascension obtains the additional

terms
— } &2s8in 1”(1 + cos?c) cos 20 sin 24 sec? 3
-+ 3 k*sin 1” cos ¢ 8in 20 cos 2a sec’s

and the aberration in declination the terms

+ 3 k*sin 1" [sin’c — (1 + cos*c)cos 20 cos 2a] tan 8
— } k*sin 1" cos ¢ 8in 20 sin 24 tan ¢

Substituting the value of & in these terms, together with
€ = 23° 27’ 30" (for 1850), and omitting insensible quantities,
the corrections of the formule (678) will be

in (o' — a), — 07.000931 sin 2 (© — a)sec?$ } (678%)
in (8’ — 9), — 0".000466 cos 2(© — a) tan &

ExampLE 1.—The mean longitude and latitude of Spica for
January 10, 1860, are

A = 201° 53’ 22".33 g = —2°2 36".29
and the sun’s longitude is
© = 289° 30/
Hence, we find, by (675), the aberration in longitude and latitude,
¥—2=—10"85 B'—B=+0"73
The corresponding mean right ascension and declination are
o = 13* 17= 49°.62 d = —10° 25' 44".9

whence, by (678), taking ¢ = 23° 27'.4, we find the aberration in
right ascension and declination,

o/ —a=—10"53 = — 0.035 8 — 3=+ 0"99
ExauMpLE 2.—The mean place of Polaris for 1820.0 was

o = 0 57= 1.505 = 14° 15’ 22".57
3 = 88° 20" 54".27
and for this date,

©=280°0 ¢ =23°27'.8
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with which the aberration in right ascension and declination is
found, by (678), to be

o' —a = +4 62".51 = 4 4°.167 8 — 3= 420”27

The additional terms of (678*) are in this case — 0/'.158 =
— 0°.011 and + 0’7.016, and the more correct values are, there-

fore,
o —a = 4 4.156 8 — 8= +420"29

890. Gauss’s Tables for computing the aberration in right ascension
and declination.—If we determine ¢ and A4 by the conditions

a sin (O + A) =ksin®
acos(® + A)=kcosQ® cos ¢

the formule (678) may be expressed as follows:

o/ —a=—asecdcos(©+ 4 —a)

¢/—3d=—asindsin(®© + A4 —a)— kcos® cos 3 sin ¢

—asindsin(® 4+ 4 —a) — tksinecos (O + 9)
— ¢k sin ¢ cos (© — 3)

I

The first of the tables proposed by Gauss* gives 4 and log a
with the argument sun’s longitude, and with these quantities we
readily compute the aberration in right ascension and the first
part of the aberration in declination. The second and third
parts of the aberration in declination are taken directly from
the second table with the arguments ® + é and © — 4. The
tables have been recomputed by NicoLar with the constant
k = 20"".4451, and are given in WARNSTORFF's edition of ScHyp-
MACHER's Hiilfstafeln.

The value of e for 1850 is employed in computing these
tables. The rate of change of ¢ is so slow that the tables will
answer for the whole of the present century, unless more than
usual precision is desired.

391. In the preceding investigation of the aberration formulse
we have, for greater simplicity, assumed the earth’s orbit to be a
circle and its motion in the orbit uniform. Let us now inquire
what correction these formule will require when the true ellip-
tical motion is employed.

* Monatliche Correspondenz, XVII. p. 312,
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If u is the true anomaly of the earth in the orbit, reckoned
from the perihelion, at the time ¢ from the perihelion passage,
r the radius vector, a the mean distance of the earth from the
sun, or the semi-major axis of the ellipse, we have

__a(—e)
T 14 ecosu

The true direction of the earth’s motion at any time is not, as
in the circular orbit, at right angles to the direction of the sun,
but in that of the tangent to the curve. If we denote the angle
which the tangent makes with the radius vector by 90° — i, we
have, by the theory of curves,

1 dr
£(90° — )= _.-—
cot( D r du
whence, by the above equation of the ellipse,

esin u

tan f = ————
14 ecosu

and the true direction of the earth’s motion will be taken into
account in our formule (675), if for © we substitute @ — &.
If v, denotes the true velocity of the earth in its orbit at the

time ¢, we have

_ . du
vl——rseclit—

and if f is the area described by the radius vector in the time ¢,
F the whole area of the ellipse described in the period 7, we
have, by KEPLER’s first law,

f_F
Tt T
or
if _F
T

‘We also have, by the theory of the ellipse,
F=za'y/(1—e¢)

df 1 du
dt~ 2 dt
and hence
du _ 2rat /(1 — e

dt Tr
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which, substituted in the above value of v,, together with the
value of r, gives . .
a x

vl.: ‘/—(1_——660T'(1 + € Co8 u)sect
The mean value of this velocity is that value which it would
have if the small periodic terms depending on u and ¢ were
omitted (Art. 861); thus, denoting the mean velocity by v, we
have

a 2r -
TVa-aT o
v,=v (1 + e cos u)sec i (680)

If, then, V is the velocity of light, and we put

k= Vs;,:x Cha k(1 4 e cos u) sec i

we can at once adapt our equations (675) to the case of the
elliptical orbit, by introducing %, for £k and @ — ¢ for @, so that
we have

¥—2A=—k(1 4 ecosu)cos(®— A —1)secisecf
B'—B=—k(l + ecosu)sin(® —2—1t)secisinf

Developing the sine and cosine of (® — 4) — 7, we have

cos (@ — A —1t)seci=co8(® — 4) + 8in (@ —A)tan ¢
sin (O —2—1)sec i =s8in (@ — 1) —cos (@ — A)tan ¢
and substituting the value of tan ¢, we find

¥ — A= —kcos(® —4)sec B — ke cos (O — u —A)sec B
B'—p = —ksin (@ —A)sin § — ke sin (® — ¥ — )sin B

The longitude of the earth’s perigee is
'=Q —u
by the introduction of which we have, finally,

¥ —2=—kcos(©— A)sec 8 — ke cos (I'— ) sec 681
B'— = —ksin (@ — A)8in 8 — ke sin (I’—A)sinﬁ} (%81

These formule differ from (675) only by the second terms,
which therefore are the corrections for the eccentricity of the
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latitudes and longitudes. The nadir of the point of observation
is then to be substituted in the place of the sun:* so that if we
put

© = the right ascension of the zenith, or the sidereal time,

the formule (675) are rendered immediately applicable to the
present case by putting 180° + ©, a, 4, and £’ for @, 4, B, and k;
whence we have, for a point on the terrestrial equator,

o/ — a=~Kcos(©— a)sec s
¢’ — 3 =1FKsin (O —a)sin 3

Since every point on the surface of the earth moves in a plane
parallel to the equator, and this plane is to be regarded as coin-
cident with the plane of the celestial equator, the same formulese
are applicable to every point, provided we introduce into the ex-
pression of k' the actual velocity of the point. This velocity
varies directly with the circumference of the parallel of latitude,
or with its radius; and this radius for the latitude ¢ is p cos ¢’,
¢’ being the geocentric latitude and p the radius of the earth for
that latitude. Hence we have only to put v’pcos¢’ for v/, or
k'p cos ¢’ for k/, and we obtain for the diurnal aberration in right
ascension and declination, for any point of the earth’s surface,
the formule

o/ — a = Kp' cos ¢’ cos (O — a)sec 3

3 —38= I;’;’ cos :’ sin ((9— a)) sin & } (684)

It only remains to determine £’. For this purpose, we have,
by (679),
p=—2 2"
vid—e) T

which, if T is the length of the sidereal year in sidereal days,
gives the value of v for one sidereal day. The motion of a point
on the earth’s equator in one sidereal day is equal to the circum-
ference of the equator: so that, if a’ is the equatorial radius, we
have the value of v’ referred to the same unit as v, by the
formula )

vV =2=d

* For the observer is moving directly from the west point of his horizon, which is
80° of right ascension in advance of the nadir; and the point from which the earth
in its annual revolution is moving is 90° of longitude in advance of the sun.
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whence
'l,. Td vV1—e
v

a

But if we put

p = the sun’s mean horizontal parallax,
we have

. a
s p = -Z

and hence we find
K=kTsinpvil—e

or, taking STRUVE's value of k = 20"".4451, BEessEL's value of
T = 36625637, ENckE’s value of p = 8//.57116, and the eccen-
tricity e = 0.01677,

kK = 031112

This quantity is so small that we may in (684) employ cos ¢ for
p cos ¢’ without sensible error; and hence the diurnal aberration
may be found by the formulae

o/ —a = 0".311 cos ¢ cos (O — a)sec 3 685
3'— & = 0".311 cos g sin (© — a)sin 3 (689)

The quantity © — a is the hour angle of the star; whence it
follows that the diurnal aberration in right ascension for a star
on the meridian is + 0”7.811 cos ¢ sec 3 = -+ 0°.0207 cos ¢ sec J;
and the diurnal aberration in declination is then zero.

894. The illustration given in Art. 388 applies also to the
diurnal aberration. In one sidereal day each star appears to
describe a small ellipse whose major axis is sin A’ cos ¢, and
minor axis sin A’ cos ¢ sin 8, the radius of the sphere being unity.
For an observer at the pole, where cos ¢ = 0, this ellipse becomes
a point, and the diurnal aberration disappears.

895. The velocity of light—The constant & was determined by
STRUVE by a comparison of the apparent places of stars at differ-
ent seasons of the year, and not from the known velocity of light.
We can, therefore, determine the velocity of light from this
constant. 'We have, from the preceding articles,

v v
" Ksinl”"~ Tsinpsinky/(1—¢)
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aberration of the fixed stars, and the result is the apparent
place at the time ¢.*

397. If @ and & are the true right ascension and declination
of a planet or comet at a time ¢, a’ and ¢’ the apparent values
for the same time, 7’ its distance from the earth, the mean dis-
tance of the earth from the sun being unity, aa, ad, the motion
of the planet in right ascension and declination in one mean
hour, we have, according to the method IL. of the preceding
article,

o —a=—r¥kaa —
' — 38 =—rk'as }(%0
in which
pr = 49718 log ¥ = 9.14073

8600

These formule may also be used for computing the sun’s
aberration in right ascension and declination, if we take for
the radius vector of the earth.

HELIOCENTRIC OR ANNUAL PARALLAX OF THE FIXED STARS.

898. The heliocentric parallax of a star is the difference
between its true places seen from the earth and from the sun.
If the orbit of the earth were a circle with a radius equal to the
mean distance from the sun, the maximum difference between
the heliocentric and geocentric places of any star would occur
when the radius vector of the earth was at right angles to the
line drawn from the earth to the star. This maximum corre-
sponds, then, to the horizontal geocentric parallax; and its effect
upon the apparent places of stars might be investigated by the
methods followed in Chapter IV.; but we prefer to employ here
the method just exhibited in the investigation of the aberration,
on account of the analogy in the resulting formule.

We shall call the maximum angle subtended by the mean
distance of the earth from the sun, at the distance of the star,
the constant of annual parallax of the star, or, simply, its annual
parallax. If then we put

* See Gavuss, Theoria Motus Corporum Celestium, Art. 71, from which the above
article is chiefly extracted. Also, for the application of method III., see the same
work, Art. 118, et seq.
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400. To find the heliocentric parallax of a star in right ascension
and declination, the annual parallax being given.—By (678), putting
pr for k, and 90° 4+ © for ©, we have, at once,

8’ — 8 = — prsin © (cos ¢ 8in 3 sin & — 8in ¢ cos 3)

o' —a = — prsecd (cos ® sin a — 8in O co8 ¢ €08 a)
(691)
— pr cos © sin & cos a

401. It can be shown from (690) that, neglecting the small
variations produced by the ellipticity of the earth’s orbit, the
effect of the annual parallax, considered alone, is to cause the
star to appear to describe a small ellipse about its mean place
in one sidereal year; an effect entirely analogous to that of the
annual aberration, Art. 888. But the maximum and minimum
of parallax occur when the earth is 90° from the points at which
the maximum and minimum of aberration occur: so that the
major axes of the parallax and aberration ellipses are at right
angles to each other. The combined effect of both aberration
and parallax is still to cause the star to describe an ellipse, the
major axis of which is equal to the hypothenuse of a right
triangle, of which the two legs are respectively equal to the
major axes of the two ellipses. For this combined effect is ex-
pressed by the following formule (taking r =1 for a circular
orbit):

W —2)=—Tkcos (@ — ) — psin (@ — A)] sec 8
(8'—#8) = —[ksin (O — ) + p cos(© — )] sin 8

which, if we assume ¢ and y to be determined by the conditions

csiny =ksin A — pcos 2
ccosy =k cosd 4+ p sin A
or
csin(A—yp)=p
ccos(A —p)=k
become
(X —2)=—ccos(® —y)sec?
(8'—#8) — —csin (Q —y)sin 3

in which we have ¢ = y/(k* 4 p*). This form for the total effect
is entirely analogous to that for the aberration alone.

MEAN AND APPARENT PLACES OF STARS.

402. The formulee above given enable us to derive the appar-
‘ent from the mean place, or the mean from the apparent place;
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we shall have

o'=a+4 [r—isinQ 4 7sin2Q — ¢"sin 2 + " sin (C — ')
— #vein 2Q + ivein (Q — I')— isin (© + )] [m + n sin a tan 4]
— [9".2231 cos Q — 0”.0897 cos 2 3 + 0”.0886 cos 2
9 2240

+ 07.6510 cos 2 + 0”.0098 cos (O + I')]Jcosatand
— 2074461 cos ¢ cos (O cos o sec ¢
— 20 .4451 gin ) sin a sec &
+
—hsin Q + Ksin 28 — A”sin 2C 4 A" sin (C— I'’)
— hvein 2Q + Avein (Q — ') — Avisin (O + T)

and

¢'=d+ [r—isin 4 ¢e8in 23 — ¢"sin 2C 4 ¢ 8in ((— I')
—vgin2Q + vsin (Q — I')—Msin(C + )] ncosa
+ [9".2281 cos 3 — 0”.0897 cos 2 3 + 07.0886 cos 2
9 2240

~+ 07.65610 cos 2() + 0”.0098 cos (O + I')] sina
— 20".4451 cos £ cos () (tan ¢ cos § — sin a sin J)
— 20 .4461 sin © cos a sin &
+

Putting then, in accordance with the notation adopted in the
Nautical Almanac and the American Ephemeris,

A = — 20".4461 cos ¢ cos (O

B = — 20 .4451 sin ©©

C= rt—isinQ 4 7sin 20 — "ein 2C + ¢” sin (C— I)
—dvgin 2Q + i*8in (O — I) — it ein (O + T)

- D= —9". 2281 cos Q3 + 0".0897 cos 2§ — 0".0886 cos 2
9 .2240

— 0".5610 cos 2() — 0”.0093 cos (© + 1)
E=—hsinQ) + Ksin 203 — 2"sin 2 + h’"ain((.—- r'
— Ahvein 2 + Avein (Q — I') — Msin (O + T)

which quantities are dependent on the time, and are wholly inde-
peundent of the star’s place; and also

a =— co8 a 86C & a’ — tan ¢ cos 8 — sin a 8in 8
b = 8in a s8eC & b = cos a 8in &
¢ =m -+ nsina tan 3 ¢ =ncosa

d = cos o tan ¢ d=—sina



REDUCTION OF STARB’ PLACES: 649
which depend on the star’s place, we have

d/=a-+4da+ Bb 4 Cc 4+ Dd + E 4 } (692)
8'=2¢+4 Aa'+ BY + Cd + Dd' +

The logarithms of 4, B, C, D are given in the Ephemeris for
every day of the year. The residual E never exceeds 0'.05, and
may usually be omitted. The logarithms of @, b, ¢, d, a’, V', ¢/, &'
are usually given in the catalogues, but where not given are
readily computed by the above formulee. When the right ascen-
sion is expressed in time, the values of g, b, ¢, d, above given,
are to be divided by 15. '

403. If we substitute the values of m and n, namely,

for 1800, m — 46".0623 n = 20".0607
1900, m — 46 .0908 n = 20 .0521

we find the following values of i, ¢, &e.:

i ¢ - ' o | » l & | ™
1800 | 0.34321 | 40411 | 0.00405 | 0.00185 | -92520 | ,00254 | 0.00042
1900 | 0.84252 0.02521

A htv
1800 |+ 07.062/+ 0".004| 41 &', 4", A, A", A inappreciable.
1900 |+ 0 .045/+ 07.008

The terms in " and " in the expression of €' may be combined
in a single term; for, putting

jeosJ = (@— i cos T
jesinJJ=—("+4 ™) sin I'
we have

'8in(@ —I') —Msin (@ + I') =4 sin (O 4 J)

and taking for 1800, I'= 279° 30’ 8"’; and for 1900, I' = 281°
12/ 42", we find

]
1800 | - 0.00294 83° 10
1900 | + 0.00293 81 55
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from this by the diurnal aberration and the refraction; but the
first of these corrections depends on the latitude of the observer
and the star’s hour angle, and the second upon the star’s zenith
distance : so that neither of them can be brougkt into the com-
putation of a star's position until the place of observation and
the local time are given.

406. The fictitious year.—In the preceding investigations, we
have used the expression “ beginning of the year,” without giving
it a definite signification. For the purpose of introducing
uniformity and accuracy in the reduction of stars’ places, BEsseL
proposed a fictitious year, to begin at the instant when the sun’s
mean longitude is 280°. This instant does not correspond to
the beginning of the tropical year on the meridian of Greenwich ;
that is, the (mean) sun is not at this instant on the meridian of
Greenwich, but on a meridian whose distance from that of
Greenwich can always be determined by allowing for the sun’s
mean motion. This meridian at which the fictitious year begins
will vary in different years; but, since the sun’s mean right
ascension is equal to his mean longitude (Art. 41), the sidereal
time at this meridian when the fictitious year begins is always
18* 40~ (= 280°). By the employment of this epoch, therefore,
the reckoning of sidereal time from the beginning of the year is
simplified, and, accordingly, it is now generally adopted as the
epoch of the catalogues of stars. In the value of log C, which
involves the fraction of a year (r), the same origin of time must
be used ; and this is attended to in the computation of the Ephe-
merides, which now give not only the logarithms of A4, B, C,
and D, but also the value of r (or its logarithm) reckoned from
the beginning of the fictitious year and reduced to decimal parts
of the mean tropical year. '

For all the purposes of reduction of modern observations, tha
computer need not enter further into this subject, and may
depend upon the Ephemerides.* But, as the subject is inti-

* The reduction of observations made between 1750 and 1850 will be most con-
veniently performed by the aid of the Tabdule Regiomontanse of BesskL. The con-
stants used by BesseL differ materially from those now adopted in the American and
British Almanacs. Professor HuBBARD has given a very simple table by which the
values of log A4, log B, log C, and log D as given in the Tab. Reg. may be reduced
to those which follow from the use of PETERS’S constants, in the Astronomical Journal,
Vol. IV. p. 142. The special and general tables for the reduction of stars’ places,
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is the time in which the sun changes his mean longitude exactly
360°, and is, therefore, found by dividing 360 by the mean daily
motion: thus, if we put

Y = the length of the tropical year in mean solar days,
we find
Y = 365%.242220027 — 0.00000006886¢

where the value of the second term for¢ = 100 is (.595, which
is the diminution of the length of the tropical year in a century.

The length of the sidereal year is invariable, and is readily
found by adding to 865.25 the time required by the sun to move
through 22".617656 at the rate of his sidereal motion; or, putting

Y’ = the length of the sidereal year,
by the proportion
360° — 22".617656 : 360° = 365%.25: ¥’

which gives
Y’ = 865.256374416 mean solar days,
= 866.256374416 sidereal days.

408. The epoch of the sun’s mean longitude.—This term denotes
the instant at which the common year begins. The value of the
longitude itself at this instant is frequently called ¢ the epoch,”
and is denoted by E. Its value for January 0 of any year,
1800 +- ¢, is found by adding the motion in 865 days for each
year not a leap year, and the motion in 366 days for each leap
year. The motion in 865 days is found from the above value
for 365.25 days by deducting one-fourth the mean daily motion,
or 14/ 47/7.083: so that, if f denotes the remainder after the
division of ¢ by 4, we have, for the epoch of 1800 -+ ¢, Jan. 0, at
Paris,

E = 279° 54 1".36 + 27”.605844¢ -+ 07.0001221805¢
— (14 47".083) f (693)

To extend this formula to years preceding 1800, we must put
J— 4 in the place of f: so that the multiplier of (— 14’ 47/7.083)
will be, for example, — 1, — 2, — 8, — 4, — 1, &c. for the years
1799, '98, '97, *96, '95, &c. But these rules for f will give the
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meridian, at the sidereal time 18* 40 the argument of the table
will be the reduced date; but at any other sidereal time g the
argument must be this reduced date increased by

g — 1840~
24»

which must be always taken < 1 and positive ; or by the quantity

g+ 520~
9= 24

omitting one whole day if g + 5* 20 < 24*. Now, in order that
the local date may correspond with that supposed in the tables,
the day must be supposed to begin at the instant when that point
is on the meridian whose right ascension is 18* 40". Therefore,
whenever the right ascension of the sun is as great as 18* 40=,
8o that the point in question culminates before the sun, one day
must be added to the common reckoning. Hence the formula
for preparing the argument of the tables will be

Argument — Reduced date 4 ¢’ 4 ¢;
in which we must take i = 0 from the beginning of the year
to the time when the sun’s R.A.= g, and i = + 1 after this
time.

The values of ¢’ are given on p. 16 of the Tub. Reg. for given
values of g. The values of % are given in Table L

~ The values of log A4, log B, log C, log D are also given in the
Berlin Jahrbuch for the fictitious date ; and the constants of pre-
cession, nutation, and aberration are the same as those employed
by BEssEL in the Tub. Reg.

411. Conversion of mean into sidereal time, and vice versa.—In the
explanation of this subject in Chapter II. we said nothing of the
effect of nutation, which we will now consider. Let us go back
to the definitions and state them more precisely.

1st. The first mean sun, which may be denoted by ®,, moves
uniformly in the ecliptic, returning to the perigee with the true
sun. The longitude of this fictitious sun referred to the mean
equinox is called the sun’s mean longitude.

2d. The second mean sun, which may be denoted by ©,, moves
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or vice versa, according to the rules in Chapter II., employing the
V, for the fictitious meridian precisely as it was there employed
for the meridian of Greenwich.—The longitude of the place to
be used here is k + d, d being the west longitude of the place
from Paris, and % the cast longitude of the fictitious meridian
from Paris given in Table I

REDUCTION OF THE APPARENT PLACE OF A PLANET OR COMET.

412. The observed place of a planet (or comet) being freed
from the effect of refraction, diurnal aberration, and geocentric
parallax, we have the apparent geocentric place, referred to the
true equator and equinox of the time of observation, and affected
by the planetary aberration. For the calculation of a planet’s
orbit from three or more observations at different times, it is
necessary to refer its places at these times to the same common
fixed planes, which is most readily effected by reducing all the
places to the equinox of the beginning of the year in which the
observations are made, or, when the observations extend beyond
one year, to the beginning of any assumed year. To effect this,
we must apply to each apparent geocentric place—1st. The aber-
ration (687), with its sign reversed, in computing which the posi-
tion of the observer on the surface of the earth may be con-
sidered by taking »’ equal to the actual distance of the planet
from the observer at the time of observation. This distance is
found from the geocentric distance at the same time with the
parallax, by the equation (137).

2d. The nutation for the date of the observation, with its
sign reversed.

3d. The precession from the date of the observation to the
assumed epoch, which will be subtracted or added according as
the epoch precedes or follows the date.

But the nutation and precession are most conveniently com-
puted together by the aid of the constants € and D used for the
fixed stars. These constants being taken for the date, ¢, d, ¢/,
and d’ are to be computed as in Art. 402, with the right ascen-
gion and declination of the planet; and then to the a and 4,
already corrected for aberration, we apply the corrections — (Ce
+ Dd) and — (C¢’ + Dd’) respectively. The place thus obtained
is the true place of the planet referred to the mean equinox of the

beginning of the year. If the several observations are in difterent
Vor. 1.—42
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415. Now, the sun’s declination is equal to the obliquity only
when it has reached its maximum (northern or southern) limit,
that is, precisely at the solstitial points. But, since the sun will,
in general, not arrive at the solstice at the same time that it
culminates at the particular meridian at which the observation is
made, we cannot directly measure this maximum by meridian
observations. But we can measure the declination at several
successive transits near the solstice, and then by interpolation
infer the maximum value. A simpler practical process (which
we shall explain fully below) is to reduce each observation to the
solstice; but this requires us to know (at least approximately)
the time when the sun arrives at the solstice, and this, again,
supposes a knowledge of the position of the equinoctial points,
which are 90° distant from the solstitial points.

The position of the equinoctial points may be determined by
observing the sun’s declination on several successive days near
the time of the equinoxes, and, by interpolation, finding the time
when the declination is zero. At the same time, a comparison
must be made between the times of transit of the sun and some
star, adopted as a fundamental star: so that the distance of the
star from the equinoctial point, or -its right ascension, is fixed.
‘We may then regard the star as a fixed point of comparison by
which the instants when the sun arrives at any given points (as
the solstices) may be determined. But, instead of finding the
equinoctial points by a direct interpolation, it is preferable in
this case also to refer each observation to the equinox, which, as
will be seen below, requires an approximate knowledge of the
obliquity of the ecliptic.

The determination of these two elements, the obliquity of the
ecliptic and the position of the equinoctial points, is, therefore,
effected by successive approximations; but, in the actual state
of astronomy, the approximations are already so far carried out
that the remaining error in either element can be treated as a
differential which, by a judicious arrangement of the observations,
produces only insensible errors of a higher order in the other
element. I proceed to trcat fully of the precise practical
methods.

416. Determination of the obliquity of the ecliptic.—Let D be the
sun’'s apparent declination derived trom an observation near the
solstice; A its apparent right ascension at the time of the obser-
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vation, derived from the solar tables; e the apparent obliquity
of the ecliptic for the same time. If the sun were exactly in
the ecliptic, we should have, by (34),

gin A tan ¢ — tan D

but accuracy requires that the sun’s latitude, 8, should be taken
into account. 'We have, by (29),

t.anD—tancsinAz_ﬂi—
cos D cos ¢
which, if we put
tan D' = tan ¢ 8in 4 (694)
becomes
sin(D—D')  sing

tan D — tan D' = A
cos Dcos D' cos D cos e

whence, with sufficient accuracy, since 8 never exceeds 1’/,
D—D'=_gsececosD (695)

Hence, if the correction Bsececos D is subtracted from the
given declination D, we shall obtain the reduced declination D,
from which, by (694), we can deduce e. It is evident that D’ is
the declination of the point in which the ecliptic is intersected
by the declination circle drawn through the sun’s centre, and
we may call the quantity Ssececos D the reduction to the ecliptic.
Near the solstices, however, this reduction does not sensibly
differ from f, since cos € and cos D are then very nearly equal.
‘We shall, therefore, in the present problem, find the reduced
declination by the formula D’ = D — §3; and then we have, by
(694),

tan ¢ = tan D’ cosec 4 (696)

Instead of computing ¢ from this equation directly, it is usual
to employ its development in series by which the difference of
e and D’ is obtained. For, since A near the northern solstice is
nearly 90°, if we put

u=190°—4

u will be a small angle whose cosine and secant will not differ
much from unity, and the equation (696), expressed in the form
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tan I’ = tan ¢ cos u, will be developed in the series [Pl. Trig.,
Art. 254]

D'—e¢=¢qsin2c 4 $¢g*sin 4c 4 3¢*sin B¢ 4 &c.
in which
_cosu—1

— — 2
g_cosu+1_ tan’ du

and the terms of the series are expressed in arc. Reducing to
seconds, and putting

x = the reduction to the solstice,

or
4
x=ta.n';u i 2c—m,n*usin4c+&c. (697)
sin 1” sin 1”
we have, at the northern solstice,
e=D'4+zx=D—f+=z (698)

The reduction z can be tabulated, for any assumed value of e,
with the argument u. The changes of the tabular numbers
depending on a change of the obliquity may also be given in the
table: so that these numbers may be readily made to correspond
to any assumed obliquity.

For the southern solstice, we take u = 270° — 4, and the
equation (696) will give tan D’ = — tan ¢ cos , the development
of which gives the algebraic sum D’ + ¢; but we can avoid the
use of two formule by throwing this change of sign upon ¢,
regarding the obliquity obtained from the southern solstice as
negative, during the computation. This simply changes the sign
of the reduction z.

417. Let us now inquire what effect an error in the right
ascensions taken from the tables, or in %, will produce in the
computed value of e. Differentiating the equation (696) with
reference to e and 4 = =+ 90° — u, we find

de = & tan u sin 2¢ du

If we suppose the error in the tabular right ascension of the
sun to be in any case as great as one second of time (the actual
probable error, however, being much less), and, therefore, sub-
stitute in this equation du = 15"/, ¢ = 23° 27'.5, we find

de = 5"”.48 tan u
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following apparent declinations of the sun’s centre, observed at
the Washington Observatory by Professor CorrIN and Lieutenant
PagE, with the mural circle.

18486. D 18486. D
June 16 | 238° 21’ 56”.02 || December 14 | — 23° 14’ 17”.26
“ 19 26 28 .19 “ 156 17 33 .82
20 27 6.79 | “ 16 20 22 .94
« 23 26 89 .92 “ 18 24 32 .69
“ 27 20 17 .84 “ 21 27 20 43
« 22 27 19 .64
“ 23 26 49 .82
“« 29 14 1.20

Taking 5* 8" 11°.2 as the longitude of Washington from Green-
wich, we find, for apparent noon at Washington, the following
values of the sun’s right ascension and latitude from the Nautical
Almanac:

1846. A B 18486. A B
June 16 | 5*38m87+.18 | 4 0”.18 || December 14 | 174 26= 52.78 | 4 0”.35
«“« 191661 5.7 —0.19 “ 16 | 17 81 18.48 | 40 .46
¢« 2016 65 16.44| —0 .82 s 16 | 17 86 44.88 | 40 .67
“ 2316 7 44.44| —0 .63 “ 18 | 17 44 86.91 | 4 0.72
« 27 |6 24 22.00| —0.72 ¢« 21| 17 b7 66.69 | 4-0.70
¢« 22)18 2 23.39 | 4+0.64
¢« 28|18 6 650.09 | 40.50
¢« 29| 18 88 28.11 | —0.19

Supposing no tables of the reduction at hand, let us first
reduce the observations at the summer solstice by the original
equation (696). Subtracting 8 from the observed values of D,
we then have

)/ 4 log tan D’ log cosec A log tan ¢ ¢
June 16 | 238° 21’ 56”.84 | 9.6365081 | 0.0018927 | 9.6874008 | 23° 27’ 23”.61
“ 19 26 28 .88 .6870823 0327 4101 25 .22
s« 20 27 7.11 .6373056 00930 8986 23 .28
s« 23 26 40 .66 .6371524 02478 4002 23 .b1
“ 27 20 18 .66 8849452 24592 4044 24 .25

Apparent obliquity — 23 27 23 .
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eliminate the error of the assumed latltude of Washington,*
we have, finally,

Mean obliquity for 1846.0 from observation — 23° 27’ 33".03
The same by PeTERs’s formula (646) thh} « « go
the annual decrease 0”.4645 2.8

420. The secular variation of the obliquity is found by com-
paring its values at very distant epochs. The observations of
BrADLEY from 1753 to 1760 gave for 1757.295 the mean obliquity
23° 28’ 14/7.055. The observations at the Dorpat Observatory
gave for 1825.0 the mean obliquity 23° 27/ 427.607. Hence

81”.448

Annual var. = — ——— — — 0".4645
67.705

Besser found — 0”.457 by comparing BRADLEY'S observations
with his own.

The secular variation is also found in Physical Astronomy,
theoretically. The value thus obtained by PETERS in his Nume-
rus Constans Nutationis is — 0.4788, as given in the formule
(646).

421. Determination of the equinoctial points, and the absolute right
ascension and declination of the fixed stars.—The declinations of the
fixed stars are either directly measured by the fixed instruments
of the observatory, or deduced immediately from their observed
meridian zenith distances (corrected for refraction) by the formula
0 = ¢ — (. The practical details, which depend on the instru-
ment employed, will be given in Vol. II. Here we have only
to observe that the immediate result of such a measurement is
the apparent declination at the time of observation, which must
then be reduced to the mean declination for some assumed
epoch by the formulee of the preceding chapter.

The position of the equinoctial points is determined as soon
as we have found the right ascension of one fixed star; and this
is done by deducing from observation the difference between the

* The latitude employed in deducing the declinations was 88° 58’ 39".25. The
latitude given by the culminations of Polaris is 88° 53’ 89”.562 ( Washington Astr.
Obs., Vol. 1., App. p. 113). If we adopt the latter value, the obliquity derived from
the northern solstice will be increased by 0”.27, and that derived from the southern
solstice will be diminished by the same quantity; and the difference then remaining
between the two results will be only 0”.67.
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‘2tan 4
sin 2¢

dd = — de

The correction of the declination D’ is composed of the cor-
rections in the latitude ¢, and the zenith distance {; since, by
the formula D = ¢ — ¢, we have

dD =dp — df

But d{ is itself composed of the corrections required in the re-
fraction and the sun’s parallax and the correction for any error
peculiar to the zenith distance ¢, which affects the meridian in-
strument employed in the observation. Denoting the correction
of the refraction by dr, that of the sun’s parallax by dpsin¢,
that of the instrument for the zenith distance ¢ by f(£), we have

dD = d¢ — [dr — dp sin £ + f(2)]

The effect of this correction upon A is found, by differentiating
(699) with reference to I’ (regarding d.D as equal to d.’), to be

2tan 4
=dD ——
a4 sin 2.D’
If then a’ denotes the corrected mean right ascension of the
star, free from all constant errors, we have

2tan 4 de 2tan 4
sin 2D’ sin 2¢

a,'=a,+ [dp—dr-l—dpsinC—f(:)]

This formula shows that nearly all the errors will be eliminated
by taking the mean between two observations taken at the same
zenith distance (or the same declination), the one near the vernal,
the other near the autumnal equinox. For, the first observation
being taken when the declination is I’ and right ascension 4,
at the second one the same declination D’ will give the right
ascension 180° — A, the tangent of which is the negative of that
of A. The temperature being generally different at the two
seasons of the year, we cannot assume that the error in the
refraction tables will be the same at both observations unless we
can also assume that the law of correction of the refraction for
temperature is perfectly known. So, also, we must admit the
possibility that such changes of temperature change the instru-
mental correction; but the corrections of the latitude and the
parallax will remain the same. Heuce, if a, is the mean right
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Feb. 23. D = — 9°46'15”.85 || Oct. 17. D = — 9° 17’ 58".12
“ o« = 220 262811 « « T= 13 28~40.01
“oet = 0 5 18.99 “ 16. t = 0 5 22.97

The times of transit are corrected for the supposed error and
rate of the clock.

For the dates of the two observations, the apparent obliquity
of the ecliptic and the sun’s latitude are as follows:

Feb. 28. Oct. 17.
e 23°27 26".10 23° 27" 24".35
8 + 0.38 — 0.8

whence

— A sececosD — 0.3 + 0.14
D'— 9 46 16 .20 — 9 17 52 98

log tan D’ 29.236063 n9.214105

log cot ¢ 0.862585 0.362595

logsin 4 7n9.598648 n9.576700
A 22% 26= 28°.17 13* 28~ 40-.14
A—-T + 0.06 + 0.13
t+A—T=a 0 5 19.05 0 5 23.10
Reduction to 1850.0 + 12.15 4+ 8.12
Mean o for 18500 = 0 5 31.20 0 5 31.22

The reduction to 1850 is here used because it can be taken
directly from the general tables for reducing the apparent places
of stars to mean places, given in the volume of Washington
Observations for 1847, Taking the mean of the two observations,
we have, finally,

Mean R. A. of y Pegasi for 1850.0 = 0* 5= 31°.21

422, 'When, by the combination of a great number of observa-
tions, the right ascension of a fundamental star is thus established,
the right ascensions of all other stars follow from the differences
of time between their several transits and that of the fandamental
star. But, in the present state of the star catalogues, it will be
preferable not to limit the object of these observations to deter-
mining a single star. The constant use of the same fundamental
stars as “ clock stars’ (stars near the equator by which the clock
correction and rate are found) gives to the relative right ascensions
of these stars (as derived from all their observed transits during
one or more years) a high degree of accuracy. Assuming,
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CHAPTER XIII
DETERMINATION OF ASTRONOMICAL CONSTANTS BY OBSERVATION.

423. I sHALL not attempt to enter into all the details of the
methods by which the various astronomical constants are deter-
mined from observations, but shall confine myself to a sketch of
their general principles, which will serve as an introduction to
the special papers to be found in astronomical memoirs and
other sources. '

THE CONSTANTS OF REFRACTION.

. 424. The general refraction formula (191) involves the two
eonstants a.and S, both of which may be found from theory by
the formulee (178) and (176). But, as the refraction formula was
deduced from an hypothesis, it was not to be expected that the
theoretical values of @ and 8 would give refractions in entire
accordance with observation. The discrepancies, however, are
exceedingly small: so small, indeed, that the formula may be re-
garded as representing well enough the law of refraction, with-
. out resorting to any new hypothesis; and to perfect it we have
only to give the constants slightly amended values, whereby the
computed refractions are made to harmonize entirely with those
deduced from observation. To deduce the corrections of a and 3,
we can employ the concise expression of the refraction (213), or

(1 —a) r =sin'z \/ii: Q

The factor 1 — a differs so little from unity that we may regard
it as constant in determining the small correction of r, and,
therefore, by differentiating, we have

(A — o) dr = sin’z \/%—[%?.da +(‘;—§ ——2%)#]

By (217) and (210) we have

—_———t—— == —
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The true zenith distances which would be obtained by a table
of refractions founded on the corrected constants will be z + dr
and 2, 4 dr,; and, therefore, if dp denotes the correction of the
assumed latitude, we shall have

90° — (¢ + dg) =z + dr + 90° — 3
90° — (¢ + d¢) = z,+ dr,— (90° — &)

whence, by taking the mean,

90° — ¢ —dp =} (z + 2)+ 4 (3, — 8) + 4 (dr + dr,)

The quantity é, — & is merely the very small change of the
star’s declination between the two culminations, arising from
precession and nutation, which is accurately known. If we sub-
stitute the values of dr and dr, in terms of da and dj, and then
put

a=1%1(A4+ 4) b=1%(B + B)

n=131z+2)+ 10, —9+ ¢ —90°
we have the equation of condition
dp + ade,+ bdB,+n =10 (702)

By employing a number of stars which culminate at various
zenith distances, we shall obtain a number of such equations, in
which the coefficients @ and b will have different values: so that
the solution of all these equations by the method of least
squares will determine the three unknown quantities dg, da,,
and dj,.

THE CONSTANT OF SOLAR PARALLAX.

425. The constant of solar parallax is the sun’s mean equatorial
horizontal parallax, or its horizontal parallax when its distance
from the earth is equal to the semi-major axis of the earth’s
orbit. The constant of parallax of any planet is also its parallax
when its distance from the earth is equal to the semi-major axis
of the earth’s orbit: so that the constant of solar parallax
belongs to the whole solar system.

The relative dimensions of the orbits of the planets are known
from the periodic times of their revolutions about the sun, since,
by KepLER'S third law, the squares of their periodic times are

proportional to the cubes of their mean distances from the sun,
Vor. L.—43
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and therefore
. 4, . . 4, .
sin # —=—=gin =, 8in %, — —~8in 7,
. 4 4,

The quantities 4 and 4, are to be found from the planetary
tables, or directly from the Nautical Almanac, where they are

expressed in terms of 4, as the unit: so that their values there
given are the values of the ratios % and %‘. Hence we shall put
4,=1 in the preceding formulee, and also put the arcs for their
sines (since the greatest planetary parallax is only 85’’): so that
we have

Then, by (114),
p=prsin[{’ — (¢ —¢)] =f—’}’sin R'— (e —¢]

p=pm8in [{/— (¢, —¢/)]= ﬁfg‘ sin [cxl — (& _9|’)]
1
But we also have

{=¢—2¢ L=e—9¢
and hence

(—4(=¢"—p—E—p)=¢—p—0@—3)

from which we obtain

p—p,=C'— c|,-(¢_¢1) +(@—23)

As the small difference 8 — 4, will be accurately known, the
observations being taken nearly on the same meridian, all the
quantities in the second member of this equation may be
regarded as known. Tence, putting

n=0—4—(p—e)+(0@—3)
(703)
a =Lsin [¢' — (v — ¢)] — Dsin [/ — (7, — 9]

we obtain the equation
an,=—n (704)

which determines m,. If the zeniths of the two places of obser-
vation are on opposite sides of the star (which is the most favor-
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where ad and ad, are 1 each case the planet’s declination minus
the star’s declination, and their signs are to be carefully observed.
For computing the coefficient @, the apparent zenith distances
will be obtained by the formule

C’=y——(.D+AJ) Cl’=¢l—(.D—l- A(’,)
8o that we have

a =L sin [¢ — (D + a8)] — D sin [/ — (D + 89))] (706)

and then, as before,
an,=n
A great number of such corresponding observations will be
necessary in order to determine =, with accuracy; and all the
equations of the form just given are to be combined by the
+ method of least squares. Thus, from the equations

am,=n, an,=n a'z, = n", &e.

we obtain the final equation

[aa] =,= [an] or 7y = l[:%:%
in which [aa] = aa 4 a’a’+ a’’a’’ 4 &c., and [an] = an + a'n’
+ a’'n'' 4 &e. N

427. To find the solar parallax by extra-meridian observations of a
planet.—The preceding process will require but a slight modifi-
cation. The difference of apparent declination of the planet and
a neighboring star is measured at both stations with a micrometer
attached to an equatorial telescope, and is to be corrected for
refraction. The quantity n will then be found by (705). The
coefficient a will now be the difference of the coefficients of
parallax in declination, computed by the formule (143), accord-
ing to which, if we put

tan ¢ - tan ¢/

ta = - — tany, =
T s © —a) n c08(0, — a,)
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we shall have

— ﬁ.sin ¢’ s8in (y — 9) _ ﬁ_Sin g, 8in (r, — 3,) 'n)

a : -
4 sin y 4, 8in 7,

in which © and ©, are the local sidereal times of the observations,
a and a, the right ascensions, 8 and d, the declinations of the
planet at these times. The equation of condition from each pair
of corresponding observations of the same star will then be, as
before, a ,= n.

If several comparisons are made at either place on the same
day, these must first be combined, and reduced, as it were, to a
single comparison. Thus, if we put

¢ — f_.sin ¢’'sin (y — 0)

T4 sin y

we have, for each comparison of the planet with the star,
8=1D+ 48+ cm,

and if m such comparisons are made, their mean will be

‘3=D+’}_l x(Aa)+n,.z1(:) -

In like manner, at the second place, we shall have for m, obser-
vations the equation
Z(c)
m,

4=2D +% 2(43) +,
1

and, taking the difference of these equations, we shall put

oo (0 )
e 2O Z@)
T m T m,

The equation of condition azxy=n will then represent all the
observations on the same day at the two places.

428. The equations of condition will involve smaller numbers
and be more easily solved if the unknown quantity is, not the
whole parallax, but the correction of some assumed value of the
parallax not greatly in error. In this case we may correct each
observed difference ad for parallax, employing the assumed value
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of m,; and, proceeding as before, we shall have the equation of
condition a az,= =, in which ar, is the required correction of =,

429. If but one limb of the planet is observed at one or both
the stations, it will be necessary to introduce the correction for
the semidiameter. As the semidiameter itself should then be
regarded as an unknown quantity, to be found if possible from
the observations, its complete expression, in terms of all the cor-
rections which the observations may require, is to be employed.
This will be found in Article 435.

430. The differences of right ascension of the planet and a
neighboring star may also be employed in the same manner as
the differences of declination, the places of observation being in
that case in widely different longitudes. 'We have only to intro-
duce into (707) the coefficients of the parallax in right ascension
computed by the first equation of (143), and in the expression of
n substitute right ascensions for declinations.

431. The only planets which are near enough to the earth for
the successful application of this method are Mars and Venus.

Mars is nearest to the earth at the time of opposition, and for
this time the British Nautical Almanac furnishes an Ephemeris
of stars to be observed with the planet. All the oppositions,
however, are not equally favorable. The mean distance of Mars
from the sun being = 1.524, and the eccentricity of the orbit
= 0.0933, while the mean distance of the earth = 1 and the ec-
centricity of its orbit = 0.017, it follows that for an opposition
in which Mars is at its perihelion while sthe earth is at its
aphelion, the distance of the two bodies will be 0.365; but for
one in which Mars is at its aphelion and the earth at its peri-
helion, their distance will be 0.683. Thus the former case will
be nearly twice as favorable as the latter.

Venus is nearest to the earth at the time of inferior conjunc-
tion, but at that time can very rarely be compared micrometrie-
ally with stars, as the observations would be made with the sun
above the horizon. The most favorable position of this planet
is at or near its stationary points, where the changes of the
planet’s place are small and may therefore be accurately com-
puted, while the distance from the earth is still not too great.*

* GERrLING, Astron. Nach., No. 699.
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3, 3, = the apparent declinations of the limb observed at -
the north and south stations respectively,
D, D, = the geocentric declinations of the moon’s centre at
the respective times of observation,
¢, ¢, = the geographical latitudes of the stations,
7, r, = the reductions of the latitudes for the earth’s com-
pression,
o, p, = the distances of the stations from the earth’s centre,
the equatorial radius being unity,
P, P, = the moon’s horizontal parallax at the times of the
observation, respectively;

then, the apparent zenith distance of the limb and the geocentric
zenith distance of the centre of the moon being, for the northern
station,

c'=9—3 and C—_—?—D
we have, by (255),
sin(D—8&) =[psin ({'—y) F Kk]sin P

where k is the constant ratio of the radii of the moon and the
earth, for which the value 0.272956 may be assumed; and the
upper or lower sign of £ is to be used according as the upper or
lower limb is observed.

At the southern station we have

G=d4—¢ G=D —g
and hence, taking the reduction 7, as a positive quantity,
sin (D, — 8) = — [p, 8in (§ — r,) = k] sin P,

where the sign of % is reversed, since the same limb will be an
upper limb at one station and a lower limb at the other. For
brevity, put

m=psin({’'—y)xk
m=ps8in(, —r) =k

then, from the equations

sin (D — &) = m sin P sin (D,— 8)) = — m, sin P,
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we derive,* neglecting powers of sin P above the third,

m sin P m? sin® P
D—38= .
sin 1” +1i sin 1”
m sin P, m?sin® P,
D—38—=—"1 1 1.5 1
v sin 1” : sin 1”

If now the times of the two observations reckoned at the
same first meridian are 7" and 7}, and for the middle time

t=3}(T+ T,) we deduce from the lunar tables the hourly in-
crease of the moon’s declination, or _:tg_’ we shall have, with
regard to second differences,

dD
-Dx'_ D=(Tx"‘ T)—d_f

Again, if we denote the moon’s horizontal parallax at the time
t by p, and compute from the tables its hourly increase for this

time, or :—l}v we shall have

sin P — gin p 4 cos p sin 1" (T — t)g%’
: . o dp
sin P,=sin p + cos p sin 1" (T, —1) It

Taking the difference of the above values of D — d and D, —d,,
we obtain, therefore,

sin® p
6

d .
0=[(T,— T)% — (8,— 8] sin 1" 4 (m* 4 m?)
+ cos p sin 1” % [m(T—1t) 4+ m, (T, —t)]

4 (m 4 m)sinp (108)
The parallax is sufficiently well known for the accurate compu-
tation of the terms in sin® » and %: so that the only unknown
quantity in this equation is the last term. In this term we have

m +4 m,=psin (I’ —7) + psin (S —n) (709)

* By the formula, [Pl. Trig. (413)],
z = sin z 4 } sin® z 4 &eo.

where the second member is to be reduced to seconds by dividing it by sin 1”.
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may isolate the terms which involve it, as follows. Neglecting
the fourth powers of the eccentricity ¢, we have, by (84) and (83),
p=1—}esintyp
__e'sin2¢

F = sn1"

But when we neglect the fourth powers of ¢, or the square of the
compression ¢, we have, by (81),

c=1#e
by which we obtain the somewhat simpler forms,

p=1—csin’y
__csin2¢
~ sinl”

These values substituted in m give, by neglecting the square of ¢,

csin 2¢ )_ k

sinl” |+
= (1 —csin’¢)(8in {' —csin 2¢ cos {") F k
=gin{’'— c(sin’¢ sin {' 4 8in 29 cos {') = k

m = (1 — csin’gp) sin(C'-—

and, similarly,

m, = gin {/ — ¢ (sin? ¢, 8in { 4 sin 2¢,c08 &) = &k
The effect of the compression will be insensible in the terms
involving sin® p, in which we may take

mt— (sin C’ F k)' ml'= (Sin C{ =+ ,‘)'

e e . . . d
and the same approximation is allowable in the term in 71t£ If

then we make these substitutions in (708), we obtain the follow-
ing expanded equation :

0=[(fi— 7)%Z — (b= &) s 1"+ [(sin &'z BF + (sin gy 7] 2

+ cosp :i" sin 17 [(sin ' 3 k) (T — ¢) + (sin g, = k) (T, — 1)]

+ p sin py (sin £’ sin {))
— ¢ p 8in p, [8in? ¢ sin {’' - sin 2¢ ¢os {’-}- sin? ¢, sin{,’ - sin 2¢, cos J;']
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If this equation be divided by g, it may be expressed under the
form

0=n+2x(a—cd) (713)
where the notation is as follows:
sin 1” dD
n="— [(T.— T) G — (4 — 9]
+ “i;"#”[ (sin ¢ 5= kY + (sin &/ = kY]
+ six;ln [(6in ¢’ k) (T —t) + (sin ¢, = k) (1,—1)] % cos p

a = sin {’ 4 sin ¢’
b =sin’g sin {’ 4 8in 2 ¢ cos {’ -} sin? ¢, 8in ¢, + sin 2 ¢, cos ¢,
x=sinp,

It is here to be observed that we have taken y, as a positive
quantity even for the southern station: so that sin 2 ¢, must be
taken positively in computing .

Let us now suppose we have obtained from a large number of
such corresponding observations the equations

0=n +x(a —cb)

0=n 4 x(a —cb)

0=n"+x(a"—cb")
&e.

Multiplying these respectively by a, a’, a”, &c., and then forming
their sum, we have

0 = [an] + [aa] x — [ad] cx

where [an] = an + a'n’ + &c., [aa] = aa + a’a’ + &c., &c. The
last term is very small: so that an approximate value of x may
be found by neglecting it, whence

[an]
@ ="[aq]

which value may then be employed with sufficient accuracy in
the term [ab]cx; we thus find the complete value

_ [an] | [an] [ad]
#="[aa] T [aa] [aa]"° M9
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THE MEAN SEMIDIAMETERS OF THE PLANETS.

435. The apparent equatorial semidiameter of a planet when
its distance from the earth is equal to the earth’s mean distance
from the sun is the constant from which its apparent semidiameter
at any other distance can be found by the formula

8 —

LN

(715)

in which &, is the mean semidiameter and 4 the actual distance
of the planet from the earth, the semi-major axis of the earth’s
orbit being unity. To find the value of s, from the values of s
observed at different times, we have then only to take the mean
of all its values found by the formula

5, = 84 (716)

taking 4 from the tables of the planet for each observation.

But here it is to be remarked that, in micrometric measures
of the apparent diameter of a planet, different values will be
obtained by different observers or with different instruments.
The spurious enlargement of the apparent disc arising from
imperfect definition of the limb, or from the irradiation resulting
from the vivid impression of light upon the eye, will vary with
the telescope, and may also vary for the same telescope when
eye pieces of different powers are employed. The irradiation
may be assumed to consist of two parts, one of which is constant
and the other proportional to the semidiameter. Those errors
of the observer which are not accidental may also be supposed to
consist of two parts, one constant and the other proportional to
the semidiameter; the first arising from a faulty judgment of a
contact of a micrometer thread with the limb of the planet, the
second, from the variations in this judgment depending on the
magnitude of the disc observed, and possibly also upon any
peculiarity of his eye by which the irradiation is for him not the
same quantity as for other observers. With the errors proportional
to the semidiameter will be combined also any error in the sup-
posed value of a revolution of the micrometer. The errors of
the two kinds will, however, be all represented in the formula

s=@B+z+syd (77

where = is the sum of all the constant corrections which the
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observed value s requires, and sy is the sum of all those which
are proportional to s. Now, let

, = an assumed value of s,
ds, = the unknown correction of this value
8, =8, + ds;

then the above equation may be written
0 =284 —3s + xd 4 syd — ds,

But syd will be sensibly the same as sy. It will, therefore, be
constant, and will combine with ds,., 'We shall, therefore, put z
for syd — ds,, and then, putting

n=384—s
our equations of condition will be of the form
xd+z4+n=0 (718)

from all of which x and 2 may be found by the method of least
squares. But it will be impossible to separate the quantity ds,
from z; we can only put

(B)=8—2
whereas we have, for the true value,
$=28,+ ds, =8 —2z+ 38y
K= A+ (119)

and then, if any independent means of finding y are discovered,
the true value of s, can be computed.

or

THE ABERRATION CONSTANT AND THE ANNUAL PARALLAX OF FIXED
STARS.

436. The constant of aberration is found by (669) when we
know the velocity of light and the mean velocity of the earth in
its orbit. The progressive motion of light was discovered by
RoEMER, in the year 1675, from the discrepancies between the
predicted and observed times of the eclipses of Jupiter's satellites.
He found that when the planet was nearest to the earth the
eclipses occurred about 8» earlier than the predicted times, and
when farthest from the earth about 8~ later than the predicted
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times. The planet was nearer the earth in the first position than
in the second by the diameter of the earth’s orbit; and hence
RoEMER was led to the true explanation of the discrepancy,—
namely, that light was progressive and traversed a distance equal
to the diameter of the earth’s orbit in about 16®. More recently,
DELAMBRE, from a discussion of several thousand of the observed
eclipses, found 8™ 13".2 for the time in which light describes the
mean distance of the earth from the sun. From this quantity,

which' is denoted by —;;’ Art. 395, we obtain the aberration
constant by the formula
2=

=2 ki
TV aTsinl"vVi—ea

(720)

Hence, with the values % — 493.2, T = 366.256, n — 86164,

e=0.01677, we find % = 20/.260. DELAMBRE gives 20'/.255,
which would result from the above formula if we omitted the
factor 171 — ¢, as was done by DELAMBRE.

On account of the uncertainty of the observations of these
eclipses (resulting from the gradual instead of the instantaneous
extinction of the light reflected by the satellite), more confidence
is placed in the value derived from direct observation of the
apparent places of the fixed stars. '

437. To find the aberration constant by observations of fixed stars.—
Observations of the right ascension of a star near the pole are
especially suitable for this purpose, because the effect of the
aberration upon the right ascension is rendered the more evident
by the large factor secd with which in (678) the constant is
multiplied. The apparent right ascension should be directly
observed at different times during at least one year, in which
time the aberration obtains all its values, from its greatest positive
to its greatest negative value. If we suppose but two observa-
tions made at the two instants when the aberration reaches its
maximum and its minimum, the earth at these times being in
opposite points of its orbit, and if a’ and a’’ are the apparent
right ascensions at these times (freed from the effects of the
nutation and the precession in the interval between the observa-
tions), we shall have

k= i(a’— a") cos ¢
Vor. I.—44
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observations of each year are separately discussed. The period
of the leading terms of the nutation being only nineteen years,
if we extend the observations for aberration over a considerable
portion of this period, it will be proper to introduce into our
equations of condition a term involving the correction of the
nutation constant, as will be seen hereafter.

438. The declinations may also be employed for determining
the aberration. If we put

& = the assumed mean declination 4 the nutation,
ad = the correction of this value,
3’ = the observed value,

we have, by (678),

8'=20+ a8 — (k 4 ak) [(sin e cos 8 — cos ¢ sin 38in o) cos ©
- 8in 8 cos a sin O]
or, putting
m’ sin M’ — sin & cos a
m' cos M' = cos 4 sin e -} sin & cos ¢ 8in a
and then
a' = —m'cos (O — M)
= 84+ak—2¢

the equation of condition is
aak+ as+n"'=0 (723)

439. If the pole star is employed, which has a sensible annual
parallax, or any star whose parallax is even suspected, it will be
proper to introduce into the equations of condition a term which
represents its effect. 'We have, by (691), introducing the above
auxiliaries,

par.in R.A.= + pr m sin (O — M) sec &
par. in dec. = + pr m'sin (O — M")

and hence the equation of condition from the right ascension
will be
ask 4+ b+ da4+n=0 (724)

and, from the declination,

adak+Vptad4n=0 (725)
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from the right ascensions of the pole star & = 20’/.4486, and the
annual parallax of the star = 0’/,1444 ; PETERS, from six hundred
and three equations of condition, formed upon the right ascen-
sions of the pole star, observed at Dorpat in the years 1822 to
1838, found &k = 20'/.4255, with the annual parallax = 0'7.1724;
LuxpanL, from one hundred and two observed declinations of
this star, found & = 20’/.5508, and the parallax = 077.1473; and
PrrERs, from two hundred and seventy-nine declinations of
the same star, observed with the Repsold vertical circle of the
Pulkova Observatory, found k= 20"7.503, and the 'parallax
= 07.067*. -

The parallax is so small a quantity that the discrepancies
between these several values appear to be relatively great:
nevertheless, we must consider them as surprisingly small when
we remember that all these determinations rest upon observa-
tions of the absolute place of the star. Differential measures of
the changes of a star’s place with the micrometer are susceptible
of greater refinement. Such a method I proceed to give in
the next article.

441. To find the relative parallax of two stars by micrometric
measures of their apparent angular distance.—It was first suggested
by the elder HerscHEL that if the absolute linear distances of
two neighboring stars from our solar system were very unequal,
their apparent angular distance from each other as seen from
the earth would necessarily vary as the earth changed its posi-
tion in its orbit. If one of the stars were so remote as to have
no sensible parallax, changes in this apparent distance (provided
they followed the known law of parallax) might be ascribed
solely to the parallax of the nearer star; and in any case such
changes might be ascribed to the relative parallax; that is, to
the difference of the parallaxes of the two stars.

For the trial of this method BesstL judiciously selected the
star 61 Cygni, near which are two much smaller stars (at dis-
tances from it of about 8 and 12’ respectively), and from a
series of micrometric measures of its angular distance from
each, extending through a period of more than a year, namely,
from August 18, 1837, to October 2, 1838, obtained the first
clearly demonstrated parallax of a fixed star.t A subsequent

* Astron. Nach., Vol. XXII. p. 119. 1 Ibid. No. 366.
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distance AB or A’B — AB, which will be denoted by as, is
given by the difterential formula

A8 = — Aa €08 8.8in P — Al cos P

where aa and ad are respectively the parallax in right ascension
and declination, which are given by (691). Substituting these
values, and then assuming the auxiliaries m and M, such that

mcos M = 8in o 8in P 4 cos a 8in & cos P
m sin M = (— cos a 8in P + sin a sin & cos P)coss
— co8 d cos Psin ¢
we have
as = prm cos (O — M) (726)

The effect of the proper motion of A upon the distance is
found as follows. Let

x = the angle which the great circle in which the star
moves makes with the declination circle,
p = the annual proper motion on the great circle,
A'a, A’¢ = the given proper motion in right ascension and
declination, reduced to the assumed epoch (Art.
379);

then, as in Art. 380, we find p and y by the formulas

p8iny = a'acos 8 (727)
- pcosy =a'd

Let 7 be the time of any observation reckoned from the assumed
epoch and expressed in fractional parts of a year. In the above
diagram, if A4’ now represents the proper motion on a great
circle in the time 7z, then AA’= tp; and, if the effect of the
proper motion upon the distance is denoted by a’s, we have also
A'B =35+ a’s, A/AB = P — y, and the triangle 4A4'B gives

cos (8 + A’s) = cos (tp) cos 8 + sin (tp) sin s cos (P —y)

Developing this equation, and retaining only second powers of zp,
we find

(zp)*sin* (P — )
28

’

a'8 = —1pcos (P—y) +
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in which 7 is the only variable. Taking then for the constants

J=—pcos (P—7y)
,__ p8in*(P—y) } (728)
f=—

the computation of the correction for each observation is readily
made by the formula

a's = fr 4 f'rr

The assumed proper motion may, however, be in error; and
there may also be errors in the observed distances which are
proportional to the time (such as any progressive change in the
value of the micrometer screw, &c.). The correction for all such
errors may be expressed by a single unknown correction y of
the coeflicient f, so that we shall take

s =(f+yr+Sfl (729)

The corrections of micrometric measures for the effects of
aberration and refraction* are treated of in Vol. II. Chapter X.
‘We shall, therefore, suppose these corrections to have been
applied, and shall take

& = the observed distance at the time 7, corrected for differ-
ential aberration and refraction,

and then we shall have
8§ =284 as 4 a's (730)

This equation involves three unknown quantities, namely, the
distance s, the parallax involved in as, and the correction y in-
volved in a’s. Let s, be an assumed value of s nearly equal to
the mean of the values of s’, and put

$=2¢8+x

The substitution of this in our equations of condition will in-
troduce the small unknown quantity z in the place of the larger

* These effects are only differential, and so small that the errors in the total refrac-
tion and aberration may safely be assumed to have no sensible influence. It is also
an advantage of this method of finding the parallax of a star, that it is free from
the errors of the nutation and precession, which, being only changes in the position
of the circles of reference, have no effect whatever upon the apparent distance of
two stars.
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one s, and will thus facilitate the computations. When all the
substitutions are made in the expression of s/, we obtain the
following equation :

0 =s,— 8 +fr + f'r + 2 + 1y + prm cos (O — M)
To put this in the usual form, let us take

n=2¢8—8+ fr+ f'rr
¢ =rmcos (0 —M)

then each observation gives the equation-

x4+ ty4ep+n=0 (781)

and from all these equations we find, by the method of least
squares, the most probable values of z, y, and p.

In the determination of so small a quantity as p, it is neces-
sary to give ta the micrometric measures the greatest possible
precision. It is particularly important to find the effects of tem-
perature upon the micrometer screw; for these effects, depending
on the season, have a period of one year, like the parallax itself,
and may in some cases so combine with it as completely to
defeat the object of the observations. At the time BEesseL pub-
lished his discussion of his observations on 61 Cygni, he had not
completed his investigations of the effect of temperature upon
the screw, and therefore introduced an indeterminate quantity &
into his equations of condition, by which the effect upon the
parallax might be subsequently taken into account when the
correction for temperature was definitively ascertained. This
was done as follows. Ile had assumed the correction of a
measured distance for the temperature of the micrometer screw
to be

a"s = — 07.0003912 s (¢ — 49°.2)

in which ¢ is the temperature by Fahrenheit’s scale, and s is ex-
pressed in revolutions of the screw. If the coefficient 07.0003912
should be changed by subsequent investigations to 077.0003912
X (1 + k), each observed distance would receive the correction
a’’s.k, the quantity » in the equations of condition would
become n — a’’s.k, and the equations would take the form

z+ty+cp—a's.k+n=0 (732)
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of an assumed aberration and nutation, and denote these
apparent values by a and J, and put

av = the correction of the nutatiqn constant,
o/, 8’ = the observed right ascension and declination;

then
o'  =a-+ safask+bp+cav
8’ =208 + ad 4+ a'ak + b'p + cav (733)

in which, as before, aa and aé are the corrections of the star’s
mean place, ak the correction of the aberration constant, p the
star's annual parallax, @ and b, @’ and & are the coeflicients
found in Arts. 437, 438, and 439. It only remains to express ¢
and ¢’ in terms of known quantities.

In the physical theory, it is shown that the coefficients of those
terms of the nutation formule (666) which depend upon 20,
O —1, and © + I' involve not only the nutation constant (the
coefficient of cos §), but also the precession constant; while all
the other coefficients vary proportionally to the coefficient of
cos . If we put

v = the assumed nutation constant,
v'= the true «“ “ =y av

and if we express the relation between v and »/ by the equation
y=v(1+19
and, in like manner, suppose the true precession constant to be
¢ =50".8798 (1 + ¢)

then, according to PETERs,* the formule (666), adapted for any
value of the constants, are for 1800,

Ae = (14 1) [9”.2231 cos 3 — 0"".0897 cos 20 -{- 0".0886 cos 2( ]
+ (1 —2.162 + 8.162 {) [0".5510 cos 2() + 0”.0093 cos(Q + I')]
ad=(1 41i) [—17".2406sin { 4 0”.2078 sin 203 — 0”.20418in 2
—0".0677 sin (€ — I')]
+ (1 —2.162i 4 8.162 {) [— 1".2694 8in 2 ® + 0".1279 sin (O — T)
—07.0218 8in (© + I')]

* Numerus Constans Nutationis, p. 46. We have omitted some terms which are
Inappreciable or of very short period. This omission will not affect the accuracy of
the determination of the quantity v.



‘THE PRECESSION CONSTANT. 701

1747, and embracing, therefore, a whole period of the nutation,
found & = 20".2116, v = 977.2320. In this discussion the parallax
of the stars was not taken into account.

~ Nearly the same value of the nutation constant follows from
the more recent observations at the Pulkova Observatory. From
the declinations of the pole star observed between 1822 and
1838, LuNpanL found v = 9”7.2164; and from the right ascensions
of the same star PETERS found 97.2361. The value 977.2281,
which PeTERS has adopted in the Numerus Constans Nutationis, is
the mean of the three values found by Buscs, LuNpanL, and
himself, having regard to the weights of the several determina-
tions as given by their probable errors.

THE PRECESSION CONSTANT.

443. If a,, 4, and a, &, are the mean right ascensions and
declinations of the same star, deduced from observation at two
distant epochs ¢, and #, by deducting from the observed values
the aberration and nutation, the annual variations of the right
ascension and declination for the mean epoch (4, + &) will be
e, —a é,—3¢
1, b=1—

2 1 3

(785)

-

These annual variations include both the precession and the
proper motion of the star; and, since both are proportional to
the time, it will be impossible to distinguish the proper motion
until the precession is obtained. If, however, we suppose that
the proper motions of the different stars observe no law, or that
they take place indiscriminately in all directions, it will follow
that the mean value of the precession, deduced from such annual
variations of a very large number of stars, will be free from the
effect of the proper motions. The latter are, in fact, so various
in direction, although, as will hereafter be shown, not entirely
without law, that this mode of proceeding must lead at least to
an approximation not very far from the truth. Accordingly,
from the a and b, found as above for each star, we derive the
m and n of Art. 374, by the equations*

" % Both mand n may be found from the right ascensions alone by forming equations

of the form
m -+ n sin o, tan d, = a

from a number of stars and solving them by the method of least squares.
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THE MOTION OF THE SUN IN SPACE.

444. With a knowledge of the precession we are enabled to
distinguish proper motions in a large number of stars. Upon
comparing these proper motions, Sir W. HERSCHEL was the first
to observe that they were not without law, that they did not
occur indiscriminately in all directions, but that, in general, the
stars were apparently moving fowards the same point of the
sphere, or from the diametrically opposite point. The latter point
he located near the star 2 Herculis. This common apparent
motion he ascribed to a real motion of our solar system, a con-
clusion which has since been fully confirmed.

Nevertheless, there are many stars whose proper motions are
exceptions to this law: these must be regarded as motions com-
pounded of the real motions of the stars themselves and that of
our sun. These real motions must, doubtless, also be connected
by some law which the future progress of astronomy may
develop ;* but thus far they present themselves in so many direc-
tions that (like the whole proper motion in relation to the
precession) they may be provisionally treated as accidental in
relation to the common motion. Hence, for the purpose of
determining the common point from which the stars appear to
be moving, and towards which our sun is really moving, we may
employ all the observed proper motions, upon the presumption
that the real motions of the stars, having the characteristics of
accidental errors of observation and combining with them, will
be eliminated in the combination. Nevertheless, in order that
the errors of observation may not have too great an influence, it
will be advisable to employ only those proper motions which are
large in comparison with their probable errors.

The direction in which a star appears to move in consequence of
the sun’s motion lies in the great circle drawn through the star
and the point towards which the sun is moving. Let this point
be here deiignated as the point O. If the great circle in which
each star is observed to move were drawn upon an artificial globe,

* The law which we naturally expect to find is that of a revolution of all the stars
of our system around their common centre of gravity. MAXADLER, conceiving that
our knowledge of the proper motions is already sufficient for the purpose, has
attempted to assign the position of this centre. He has fixed upon Alcyone, the
principal star of the Pleiades, as the central sun. Astron. Nach., No. 566. Die
Eigenbewegungen der Fizsterne in ihrer Beziehung zum Gesammisystem, von J. H. MADLER,
Dorpat, 1856.
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angle y produced by the variations of 4 and D will be found
from the triangle POS by the first differential formule (47);
whence

az.8ind=(7—y)sina ___(cos (a—4) cos:iit;D—sm acos‘D)AAcosD
i —_ 3
+ sin (a — 4) cos AD (740)

sin A

~ Hence, we have only to compute for each star the values of y

and sin 2 by (788), and of y’ by (739), and then, putting
n=(y—x)sinl

a8 — A) cos & 8in D —sin 8 cos D
- sin 4

sin (a — A)cos ¢
sin 2

b=

we form the equation of condition,

a.0AcosD 4 b.aD 4+n=0

in which a4 cos D and aD are the unknown quantities. From
all the equations thus formed the most probable values of a4
and aD will be found by the method of least squares. The
quantity (y —y’) sin 4 is the distance between the great circle in
which the star really moves and that drawn from the star to the
point O, measured at this point.

In this manner the position of the point O has been very closely
determined. The earlier determinations founded on a compara-
tively small number of well established proper motions are
those of

'W. HerscHEL, 4 — 245° 53’ D = 4 49° 3¢’
and GAuss, A4 =259 10 D =430 50

Of the more recent determinations, the first in the order of time
is that of ARGELANDER.* He employed 390 stars, the proper
motions of which he found by comparing their positions as deter-
mined by himself for 1830t with those determined by BesseL from
BRrADLEY’S observations for 1755.] He divided these stars into

* Astron. Nach., No. 868. + DLX Stell. Fiz. Positiones Mediz ineunte anno 1830.
t Fundamenta Astronom
Vor. I.—45
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than in the other; and the aggregate of all the proper motions,
having regard to their signs, would not be zero.

Since it is probable that the average distance of stars of the
same magnitude is the same on all sides of us (although there are
not a few individual exceptions of small stars with large proper
motions and large stars with small ones), a more satisfactory
determination of the precession constant may result from future
investigations in which not only all the stars employed shall be
uniformly distributed, but those of each order of apparent magni-
tude shall be so distributed. It will be impossible to secure this
condition if the larger stars are retained ; for their distribution is
too unequal. By confining the investigation to the small stars,
there will also be obtained the additional advantage that the
amount of the proper motions themselves will probably be very
small, and thus have very little influence upon the precession
constant, even if they are not wholly eliminated. The formation
of accurate catalogues of the small stars is therefore essential to
the future progress of astronomy in this direction.

4
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